cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A367298 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 4*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.

Original entry on oeis.org

1, 2, 4, 5, 14, 15, 12, 48, 76, 56, 29, 148, 326, 372, 209, 70, 436, 1212, 1904, 1718, 780, 169, 1242, 4169, 8228, 10191, 7642, 2911, 408, 3456, 13576, 32176, 49992, 51488, 33112, 10864, 985, 9448, 42492, 117304, 218254, 281976, 249612, 140712, 40545
Offset: 1

Views

Author

Clark Kimberling, Nov 26 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
    1
    2     4
    5    14     15
   12    48     76     56
   29   148    326    372    209
   70   436   1212   1904   1718   780
  169  1242   4169   8228  10191  7642    2911
  408  3456  13576  32176  49992  51488  33112  10864
Row 4 represents the polynomial p(4,x) = 12 + 48*x + 76*x^2 + 56*x^3, so (T(4,k)) = (12,48,76,56), k=0..3.
		

Crossrefs

Cf. A000129 (column 1), A001353 (p(n,n-1)), A154244 (row sums, p(n,1)), A002605 (alternating row sums, p(n,-1)), A190989 (p(n,2)), A005668 (p(n,-2)), A190869 (p(n,-3)), A094440, A367208, A367209, A367210, A367211, A367297, A367299, A367300, A367301.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 2 + 4 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 2 + 4*x, u = p(2,x), and v = 1 - 2*x - x^2.
p(n,x) = k*(b^n - c^n), where k = -(1/sqrt(8 + 8*x + 12*x^2)), b = (1/2)*(4*x + 2 + 1/k), c = (1/2)*(4*x + 2 - 1/k).

A368151 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where u = p(2,x), v = 2 - x^2.

Original entry on oeis.org

1, 1, 3, 3, 6, 8, 5, 21, 25, 21, 11, 48, 101, 90, 55, 21, 123, 290, 414, 300, 144, 43, 282, 850, 1416, 1551, 954, 377, 85, 657, 2255, 4671, 6109, 5481, 2939, 987, 171, 1476, 5883, 13986, 22374, 24300, 18585, 8850, 2584, 341, 3303, 14736, 40320, 74295, 97713
Offset: 1

Views

Author

Clark Kimberling, Dec 31 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1     3
   3     6    8
   5    21    25    21
  11    48   101    90    55
  21   123   290   414   300  144
  43   282   850  1416  1551  954    377
  85   657  2255  4671  6109  5481  2939  987
Row 4 represents the polynomial p(4,x) = 5 + 21 x + 25 x^2 + 21 x^3, so (T(4,k)) = (5,21,25,21), k=0..3.
		

Crossrefs

Cf. A001045 (column 1); A001906 (p(n,n-1)); A001076 (row sums), (p(n,1)); A077985 (alternating row sums), (p(n,-1)); A186446 (p(n,2)), A107839, (p(n,-2)); A190989, (p(n,3)); A023000, (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 2 - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where p(1,x) = 1, p(2,x) = 1 + 3 x, u = p(2,x), and v = 2 - x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(9 + 6 x + 5 x^2), b = (1/2) (3 x + 1 - 1/k), c = (1/2) (3 x + 1 + 1/k).
Showing 1-3 of 3 results.