A190990 a(n) = 10*a(n-1) - 8*a(n-2), with a(0)=0, a(1)=1.
0, 1, 10, 92, 840, 7664, 69920, 637888, 5819520, 53092096, 484364800, 4418911232, 40314193920, 367790649344, 3355392942080, 30611604226048, 279272898723840, 2547836153430016, 23244178344509440, 212059094217654272, 1934637515420467200, 17649902400463437824
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-8).
Crossrefs
Cf. A190958 (index to generalized Fibonacci sequences)
Programs
-
Magma
[Round(2^(3*(n-1)/2)*Evaluate(ChebyshevU(n), 5/(2*Sqrt(2)))): n in [0..30]]; // G. C. Greubel, Sep 15 2022
-
Mathematica
LinearRecurrence[{10,-8}, {0,1}, 50]
-
SageMath
A190990 = BinaryRecurrenceSequence(10, -8, 0, 1) [A190990(n) for n in (0..30)] # G. C. Greubel, Sep 15 2022
Formula
G.f.: x / ( 1-10*x+8*x^2 ). - R. J. Mathar, May 26 2011
E.g.f.: (1/sqrt(17))*exp(5*x)*sinh(sqrt(17)*x). - G. C. Greubel, Sep 15 2022