cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190997 Product of digits of all the divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 36, 7, 64, 27, 0, 1, 288, 3, 56, 75, 384, 7, 2592, 9, 0, 42, 8, 6, 18432, 50, 72, 378, 3584, 18, 0, 3, 2304, 27, 168, 525, 373248, 21, 432, 243, 0, 4, 16128, 12, 512, 13500, 288, 28, 3538944, 252, 0, 105, 2880, 15, 725760, 125, 860160, 945
Offset: 1

Views

Author

Jaroslav Krizek, Jun 15 2011

Keywords

Comments

Product of digits of concatenation of all divisors of n (A037278).

Examples

			For n = 12: a(12) = 1 * 2 * 3 * 4 * 6 * 1 * 2 = 288.
		

Crossrefs

Programs

  • Maple
    A190997:=proc(n) local d, i, p: d:=numtheory[divisors](n): p:=1: for i from 1 to nops(d) do p:=p*mul(d, d=convert(d[i], base, 10)): od: return p: end: seq(A190997(n),n=1..57); # Nathaniel Johnston, Jun 15 2011
  • Mathematica
    Table[Times@@Flatten[IntegerDigits/@Divisors[n]],{n,100}] (* Harvey P. Dale, Nov 27 2022 *)
  • PARI
    a007954(n) = my(d=digits(n)); prod(i=1, #d, d[i]);
    a(n) = my(div=divisors(n), pdt=1); for(k=1, #div, pdt=pdt*a007954(div[k])); pdt \\ Felix Fröhlich, Sep 22 2016

Formula

a(n) = 0 for n = multiples of 10; a(A008592(n)) = 0 for n >=1.