A248811
Triangle read by rows: T(n,k) is the coefficient A_k in the transformation of 1 + x + x^2 + ... + x^n to the polynomial A_k*(x+3)^k for 0 <= k <= n.
Original entry on oeis.org
1, -2, 1, 7, -5, 1, -20, 22, -8, 1, 61, -86, 46, -11, 1, -182, 319, -224, 79, -14, 1, 547, -1139, 991, -461, 121, -17, 1, -1640, 3964, -4112, 2374, -824, 172, -20, 1, 4921, -13532, 16300, -11234, 4846, -1340, 232, -23, 1, -14762, 45517, -62432, 50002, -25772, 8866, -2036, 301, -26, 1, 44287, -151313, 232813, -212438, 127318, -52370, 14974, -2939, 379, -29, 1
Offset: 0
1;
-2, 1;
7, -5, 1;
-20, 22, -8, 1;
61, -86, 46, -11, 1;
-182, 319, -224, 79, -14, 1;
547, -1139, 991, -461, 121, -17, 1;
-1640, 3964, -4112, 2374, -824, 172, -20, 1;
4921, -13532, 16300, -11234, 4846, -1340, 232, -23, 1;
-14762, 45517, -62432, 50002, -25772, 8866, -2036, 301, -26, 1;
44287, -151313, 232813, -212438, 127318, -52370, 14974, -2939, 379, -29, 1;
-
[[(&+[(-3)^(j-k)*Binomial(j,k): j in [0..n]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, May 27 2018
-
T[n_, k_]:= Sum[(-3)^(j-k)*Binomial[j,k], {j,0,n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 27 2018 *)
-
for(n=0,20,for(k=0,n,print1(sum(i=0,n,((-3)^(i-k)* binomial(i, k)) ),", ")))
A191010
a(n) = (n*4^(n+1) + (6*4^(n+1)+(-1)^n)/5)/5.
Original entry on oeis.org
1, 7, 41, 215, 1065, 5079, 23593, 107479, 482345, 2139095, 9395241, 40936407, 177167401, 762356695, 3264175145, 13915694039, 59098749993, 250138895319, 1055531162665, 4442026976215, 18647717207081, 78109306037207, 326510972984361, 1362338887279575
Offset: 0
-
seq((n*4^(n+1) + (6*4^(n+1)+(-1)^n)/5)/5, n=0..50); # Robert Israel, May 03 2017
-
CoefficientList[Series[1/((1 + x) (1 - 4 x)^2), {x, 0, 23}], x] (* or *)
LinearRecurrence[{7, -8, -16}, {1, 7, 41}, 24] (* Michael De Vlieger, May 03 2017 *)
-
a(n)= (n*4^(n+1)+(6*4^(n+1)+(-1)^n)/5)/5; \\ Michel Marcus, Oct 16 2014
-
Vec(1 / ((1 + x)*(1 - 4*x)^2) + O(x^30)) \\ Colin Barker, May 03 2017
A246798
Triangle read by rows: T(n,k) is the coefficient A_k in the transformation Sum_{k=0..n} (k+1)*x^k = Sum_{k=0..n} A_k*(x+3)^k.
Original entry on oeis.org
1, -5, 2, 22, -16, 3, -86, 92, -33, 4, 319, -448, 237, -56, 5, -1139, 1982, -1383, 484, -85, 6, 3964, -8224, 7122, -3296, 860, -120, 7, -13532, 32600, -33702, 19384, -6700, 1392, -161, 8, 45517, -124864, 150006, -103088, 44330, -12216, 2107, -208, 9, -151313, 465626, -637314, 509272, -261850, 89844, -20573, 3032, -261, 10
Offset: 0
Triangle starts:
1;
-5, 2;
22, -16, 3;
-86, 92, -33, 4;
319, -448, 237, -56, 5;
-1139, 1982, -1383, 484, -85, 6;
3964, -8224, 7122, -3296, 860, -120, 7;
-13532, 32600, -33702, 19384, -6700, 1392, -161, 8;
45517, -124864, 150006, -103088, 44330, -12216, 2107, -208, 9;
-151313, 465626, -637314, 509272, -261850, 89844, -20573, 3032, -261, 10;
...
-
T(n, k) = (k+1)*sum(i=0, n-k, (-3)^i*binomial(i+k+1, k+1))
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")))
Showing 1-3 of 3 results.
Comments