A191010 a(n) = (n*4^(n+1) + (6*4^(n+1)+(-1)^n)/5)/5.
1, 7, 41, 215, 1065, 5079, 23593, 107479, 482345, 2139095, 9395241, 40936407, 177167401, 762356695, 3264175145, 13915694039, 59098749993, 250138895319, 1055531162665, 4442026976215, 18647717207081, 78109306037207, 326510972984361, 1362338887279575
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-8,-16).
Crossrefs
Cf. A191008.
Programs
-
Maple
seq((n*4^(n+1) + (6*4^(n+1)+(-1)^n)/5)/5, n=0..50); # Robert Israel, May 03 2017
-
Mathematica
CoefficientList[Series[1/((1 + x) (1 - 4 x)^2), {x, 0, 23}], x] (* or *) LinearRecurrence[{7, -8, -16}, {1, 7, 41}, 24] (* Michael De Vlieger, May 03 2017 *)
-
PARI
a(n)= (n*4^(n+1)+(6*4^(n+1)+(-1)^n)/5)/5; \\ Michel Marcus, Oct 16 2014
-
PARI
Vec(1 / ((1 + x)*(1 - 4*x)^2) + O(x^30)) \\ Colin Barker, May 03 2017
Formula
a(n) = (n*4^(n+1) + (6*4^(n+1)+(-1)^n)/5)/5.
From Colin Barker, May 03 2017: (Start)
G.f.: 1 / ((1 + x)*(1 - 4*x)^2).
a(n) = 7*a(n-1) - 8*a(n-2) - 16*a(n-3) for n>2.
(End)
E.g.f.: (80*x*exp(4*x)+24*exp(4*x)+exp(-x))/25. - Robert Israel, May 03 2017
Extensions
Formula corrected and more terms from Michel Marcus, Oct 16 2014
Edited by M. F. Hasler, Oct 16 2014
Comments