cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Edward Omey

Edward Omey's wiki page.

Edward Omey has authored 4 sequences.

A191010 a(n) = (n*4^(n+1) + (6*4^(n+1)+(-1)^n)/5)/5.

Original entry on oeis.org

1, 7, 41, 215, 1065, 5079, 23593, 107479, 482345, 2139095, 9395241, 40936407, 177167401, 762356695, 3264175145, 13915694039, 59098749993, 250138895319, 1055531162665, 4442026976215, 18647717207081, 78109306037207, 326510972984361, 1362338887279575
Offset: 0

Author

Edward Omey, Jun 16 2011

Keywords

Comments

a(n) = 4^(n+1)*H(2^n)/5 with H(2^n) = n+(6+(-1)^n/4^(n+1))/5 = E(N(2^n)), where X, X(1), X(2),... denote random variables with pdf P(X = 1) = P(X = 4) = 1/5 and P(X = 2) = 3/5, N(x) is the first value of k such that X(1)*X(2)*...*X(k) > x and H(x)= E(N(x)).

Crossrefs

Cf. A191008.

Programs

  • Maple
    seq((n*4^(n+1) + (6*4^(n+1)+(-1)^n)/5)/5, n=0..50); # Robert Israel, May 03 2017
  • Mathematica
    CoefficientList[Series[1/((1 + x) (1 - 4 x)^2), {x, 0, 23}], x] (* or *)
    LinearRecurrence[{7, -8, -16}, {1, 7, 41}, 24] (* Michael De Vlieger, May 03 2017 *)
  • PARI
    a(n)= (n*4^(n+1)+(6*4^(n+1)+(-1)^n)/5)/5; \\ Michel Marcus, Oct 16 2014
    
  • PARI
    Vec(1 / ((1 + x)*(1 - 4*x)^2) + O(x^30)) \\ Colin Barker, May 03 2017

Formula

a(n) = (n*4^(n+1) + (6*4^(n+1)+(-1)^n)/5)/5.
From Colin Barker, May 03 2017: (Start)
G.f.: 1 / ((1 + x)*(1 - 4*x)^2).
a(n) = 7*a(n-1) - 8*a(n-2) - 16*a(n-3) for n>2.
(End)
E.g.f.: (80*x*exp(4*x)+24*exp(4*x)+exp(-x))/25. - Robert Israel, May 03 2017

Extensions

Formula corrected and more terms from Michel Marcus, Oct 16 2014
Edited by M. F. Hasler, Oct 16 2014

A191007 a(n) = n*2^(n+1) + (2^(n+3)+(-1)^n)/3.

Original entry on oeis.org

3, 9, 27, 69, 171, 405, 939, 2133, 4779, 10581, 23211, 50517, 109227, 234837, 502443, 1070421, 2271915, 4805973, 10136235, 21321045, 44739243, 93672789, 195734187, 408245589, 850045611, 1767200085, 3668617899, 7605671253, 15748213419, 32570168661, 67287820971
Offset: 0

Author

Edward Omey, Jun 16 2011

Keywords

Comments

Another renewal type of sequence: Let X, X(1),X(2),... denote independent random variables with pdf P(X=1) = P(X=2) = P(X=4) = 1/3. Let N(x) denote the first value of k such that X(1)*X(2)...*X(k) > x, and let H(x) = E(N(x)). The sequence a(n) is given by a(n) = 2^(n+1)*H(2^n).

Crossrefs

3 times A045883.

Programs

  • Magma
    [n*2^(n+1)+(2^(n+3)+(-1)^n)/3: n in [0..30]]; // Vincenzo Librandi, Oct 16 2014
  • Mathematica
    Table[n 2^(n + 1) + (2^(n + 3) + (-1)^n)/3, {n, 0, 70}] (* Vincenzo Librandi, Oct 16 2014 *)
    LinearRecurrence[{3,0,-4},{3,9,27},40] (* Harvey P. Dale, Feb 11 2024 *)
  • PARI
    a(n) = n*2^(n+1) + (2^(n+3)+(-1)^n)/3; \\ Michel Marcus, Oct 16 2014
    

Formula

a(n) = n*2^(n+1) + (2^(n+3)+(-1)^n)/3.
a(n) = 3 * A045883(n+1).
G.f.: 3/((1 + x)*(1 - 2*x)^2). [Bruno Berselli, Oct 16 2014]

Extensions

Formula corrected and more terms from Michel Marcus, Oct 16 2014

A191008 a(n) = (n*3^(n+1)+((5*3^(n+1)+(-1)^(n))/4))/4.

Original entry on oeis.org

1, 5, 22, 86, 319, 1139, 3964, 13532, 45517, 151313, 498226, 1627538, 5281195, 17039327, 54705208, 174877304, 556916953, 1767605981, 5593383310, 17651846030, 55570626391, 174557144075, 547207226932, 1712229064916, 5348509347109, 16680994498409, 51949382866474
Offset: 0

Author

Edward Omey, Jun 16 2011

Keywords

Comments

Another renewal type of sequence. Let X, X(1), X(2),... denote random variables with pdf P(X = 1) = P(X = 4 ) = 1/4 and P(X = 2) = 1/2. Let N(x) denote the first value of k such that X(1)*X(2)*...*X(k) > x and let H(x)= E(N(x)). The sequence is given by a(n) = 3^(n+1)*H(2^n)/4.

Programs

  • Maple
    A191008:=n->(n*3^(n+1)+((5*3^(n+1)+(-1)^(n))/4))/4: seq(A191008(n), n=0..40); # Wesley Ivan Hurt, May 03 2017
  • Mathematica
    LinearRecurrence[{5, -3, -9}, {1, 5, 22}, 27] (* or *)
    CoefficientList[Series[1/((1 + x) (1 - 3 x)^2), {x, 0, 26}], x] (* Michael De Vlieger, May 03 2017 *)
  • PARI
    a(n)=(n*3^(n+1)+((5*3^(n+1)+(-1)^(n))/4))/4; \\ Michel Marcus, Oct 16 2014
    
  • PARI
    Vec(1 / ((1 + x)*(1 - 3*x)^2) + O(x^30)) \\ Colin Barker, May 03 2017

Formula

a(n) = (n*3^(n+1)+((5*3^(n+1)+(-1)^(n))/4))/4.
From Colin Barker, May 03 2017: (Start)
G.f.: 1 / ((1 + x)*(1 - 3*x)^2).
a(n) = 5*a(n-1) - 3*a(n-2) - 9*a(n-3) for n>2.
(End)

Extensions

More terms from Michel Marcus, Oct 16 2014

A191682 Twice A113473.

Original entry on oeis.org

2, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Author

Edward Omey, Jun 11 2011

Keywords

Comments

Arises in a renewal problem. Suppose X(1), X(2), ... are independent and identically distributed random variables with P(X = 1) = P(X = 2) = 0.5, and let N(n) denote the first value of k such that X(1)*X(2)*...*X(k) > x. Then a(n) gives the expected value of N(n), n = 1, 2, 3, ...

Crossrefs

Cf. A113473.