A191106 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 3x are in a.
1, 3, 7, 9, 19, 21, 25, 27, 55, 57, 61, 63, 73, 75, 79, 81, 163, 165, 169, 171, 181, 183, 187, 189, 217, 219, 223, 225, 235, 237, 241, 243, 487, 489, 493, 495, 505, 507, 511, 513, 541, 543, 547, 549, 559, 561, 565, 567, 649, 651, 655, 657, 667, 669, 673, 675, 703, 705, 709, 711, 721, 723, 727, 729, 1459, 1461, 1465, 1467, 1477
Offset: 1
Examples
1 -> 3 -> 7,9 -> 19,21,25,27 -> ...
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, 10 (2007) 1-13.
- D. Jordan and R. Schayer Rational points on the Cantor middle thirds set, Penn State, REU 2003.
- Eric Weisstein's World of Mathematics, Cantor Set
Crossrefs
Programs
-
Mathematica
h = 3; i = -2; j = 3; k = 0; f = 1; g = 9; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191106; regarding g, see note at A190803 *) b = (a + 2)/3; c = a/3; r = Range[1, 900]; d = Intersection[b, r](* illustrates closure property *) e = Intersection[c, r](* illustrates closure property *) 2 FromDigits[#, 3]&/@Tuples[{0, 1}, 7] + 1 (* Vincenzo Librandi, Jul 10 2019 *)
Formula
a(n) = 2*A005836(n) + 1. - Charles R Greathouse IV, Sep 06 2011
a(n) = A005823(n) + 1. - Vladimir Shevelev, Dec 17 2012
a(n) = (A191108(n) + 1)/2. - Peter Munn, Jul 09 2019
Comments