A191107 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 3x+1 are in a.
1, 4, 10, 13, 28, 31, 37, 40, 82, 85, 91, 94, 109, 112, 118, 121, 244, 247, 253, 256, 271, 274, 280, 283, 325, 328, 334, 337, 352, 355, 361, 364, 730, 733, 739, 742, 757, 760, 766, 769, 811, 814, 820, 823, 838, 841, 847, 850, 973, 976, 982, 985, 1000, 1003, 1009, 1012, 1054, 1057, 1063, 1066, 1081, 1084, 1090, 1093, 2188
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Barry Brent, On the Constant Terms of Certain Laurent Series, Preprints (2023) 2023061164.
Programs
-
Maple
N:= 100000: # to get all terms <= N with(queue): Q:= new(1): A:= {}: while not empty(Q) do s:= dequeue(Q); A:= A union {s}; for t in {3*s-2,3*s+1} minus A do if t <= N then enqueue(Q,t) fi od od: sort(convert(A,list)); # Robert Israel, Nov 29 2015
-
Mathematica
h = 3; i = -2; j = 3; k = 1; f = 1; g = 7; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191107 *) b = (a + 2)/3; c = (a - 1)/3; r = Range[1, 900]; d = Intersection[b, r] (* A003278 *) e = Intersection[c, r] (* A005836 *)
Formula
Conjecture: a(n) = A190640(n)/2. - Michel Marcus, Aug 24 2016
Comments