cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003278 Szekeres's sequence: a(n)-1 in ternary = n-1 in binary; also: a(1) = 1, a(2) = 2, and thereafter a(n) is smallest number k which avoids any 3-term arithmetic progression in a(1), a(2), ..., a(n-1), k.

Original entry on oeis.org

1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41, 82, 83, 85, 86, 91, 92, 94, 95, 109, 110, 112, 113, 118, 119, 121, 122, 244, 245, 247, 248, 253, 254, 256, 257, 271, 272, 274, 275, 280, 281, 283, 284, 325, 326, 328, 329, 334, 335, 337, 338, 352, 353
Offset: 1

Views

Author

Keywords

Comments

That is, there are no three elements A, B and C such that B - A = C - B.
Positions of 1's in Richard Stanley's Forest Fire sequence A309890. - N. J. A. Sloane, Dec 01 2019
Subtracting 1 from each term gives A005836 (ternary representation contains no 2's). - N. J. A. Sloane, Dec 01 2019
Difference sequence related to Gray code bit sequence (A001511). The difference patterns follows a similar repeating pattern (ABACABADABACABAE...), but each new value is the sum of the previous values, rather than simply 1 more than the maximum of the previous values. - Hal Burch (hburch(AT)cs.cmu.edu), Jan 12 2004
Sums of distinct powers of 3, translated by 1.
Positions of 0 in A189820; complement of A189822. - Clark Kimberling, May 26 2011
Also, Stanley sequence S(1): see OEIS Index under Stanley sequences (link below). - M. F. Hasler, Jan 18 2016
Named after the Hungarian-Australian mathematician George Szekeres (1911-2005). - Amiram Eldar, May 07 2021
If A_n=(a(1),a(2),...,a(2^n)), then A_(n+1)=(A_n,A_n+3^n). - Arie Bos, Jul 24 2022

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 5*x^4 + 10*x^5 + 11*x^6 + 13*x^7 + 14*x^8 + 28*x^9 + ...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 164.
  • Richard K. Guy, Unsolved Problems in Number Theory, E10.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals 1 + A005836. Cf. A001511, A098871.
Row 0 of array in A093682.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
Cf. A003002, A229037 (the Forest Fire sequence), A309890 (Stanley's version).
Similar formula:
If A_n=(a(1),a(2),...,a(2^n)), then A_(n+1)=(A_n,A_n+4^n) produces A098871;
If A_n=(a(1),a(2),...,a(2^n)), then A_(n+1)=(A_n,A_n+2*3^n) produces A191106.

Programs

  • Julia
    function a(n)
        return 1 + parse(Int, bitstring(n-1), base=3)
    end # Gabriel F. Lipnik, Apr 16 2021
  • Maple
    a:= proc(n) local m, r, b; m, r, b:= n-1, 1, 1;
          while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*3 od; r
        end:
    seq(a(n), n=1..100); # Alois P. Heinz, Aug 17 2013
  • Mathematica
    Take[ Sort[ Plus @@@ Subsets[ Table[3^n, {n, 0, 6}]]] + 1, 58] (* Robert G. Wilson v, Oct 23 2004 *)
    a[1] = 0; h = 180;
    Table[a[3 k - 2] = a[k], {k, 1, h}];
    Table[a[3 k - 1] = a[k], {k, 1, h}];
    Table[a[3 k] = 1, {k, 1, h}];
    Table[a[n], {n, 1, h}]   (* A189820 *)
    Flatten[Position[%, 0]]  (* A003278 *)
    Flatten[Position[%%, 1]] (* A189822 *)
    (* A003278 from A189820, from Clark Kimberling, May 26 2011 *)
    Table[FromDigits[IntegerDigits[n, 2], 3] + 1, {n, 0, 57}] (* Amit Munje, Jun 03 2018 *)
  • PARI
    a(n)=1+sum(i=1,n-1,(1+3^valuation(i,2))/2) \\ Ralf Stephan, Jan 21 2014
    
  • Perl
    $nxt = 1; @list = (); for ($cnt = 0; $cnt < 1500; $cnt++) { while (exists $legal{$nxt}) { $nxt++; } print "$nxt "; last if ($nxt >= 1000000); for ($i = 0; $i <= $#list; $i++) { $t = 2*$nxt - $list[$i]; $legal{$t} = -1; } $cnt++; push @list, $nxt; $nxt++; } # Hal Burch
    
  • Python
    def A003278(n):
        return int(format(n-1,'b'),3)+1 # Chai Wah Wu, Jan 04 2015
    

Formula

a(2*k + 2) = a(2*k + 1) + 1, a(2^k + 1) = 2*a(2^k).
a(n) = b(n+1) with b(0) = 1, b(2*n) = 3*b(n)-2, b(2*n+1) = 3*b(n)-1. - Ralf Stephan, Aug 23 2003
G.f.: x/(1-x)^2 + x * Sum_{k>=1} 3^(k-1)*x^(2^k)/((1-x^(2^k))*(1-x)). - Ralf Stephan, Sep 10 2003, corrected by Robert Israel, May 25 2011
Conjecture: a(n) = (A191107(n) + 2)/3 = (A055246(n) + 5)/6. - L. Edson Jeffery, Nov 26 2015
a(n) mod 2 = A010059(n). - Arie Bos, Aug 13 2022

A191106 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 3x are in a.

Original entry on oeis.org

1, 3, 7, 9, 19, 21, 25, 27, 55, 57, 61, 63, 73, 75, 79, 81, 163, 165, 169, 171, 181, 183, 187, 189, 217, 219, 223, 225, 235, 237, 241, 243, 487, 489, 493, 495, 505, 507, 511, 513, 541, 543, 547, 549, 559, 561, 565, 567, 649, 651, 655, 657, 667, 669, 673, 675, 703, 705, 709, 711, 721, 723, 727, 729, 1459, 1461, 1465, 1467, 1477
Offset: 1

Views

Author

Clark Kimberling, May 26 2011

Keywords

Comments

Related sequences for various choices of i and k as defined in A190803:
A003278: (i,k) = (-2,-1)
A191106: (i,k) = (-2, 0)
A191107: (i,k) = (-2, 1)
A191108: (i,k) = (-2, 2)
A153775: (i,k) = (-1, 0)
A147991: (i,k) = (-1, 1)
A191109: (i,k) = (-1, 2)
A005836: (i,k) = ( 0, 1)
A191110: (i,k) = ( 0, 2)
A132140: (i,k) = ( 1, 2)
For a=A191106, we have closure properties: the integers in (2+a)/3 comprise a; the integers in a/3 comprise a.
For k >= 1, m = a(i), 1 <= i <= 2^k seems to be m such that m/(3^k+1) is in the Cantor set (except that m = 0 and m = 3^k+1 do not appear). For k >= 2, m = (a(i)-1)/2, 1 <= i <= 2^k seems to be m such that m/((3^k-1)/2) is in the Cantor set. - Peter Munn, Jul 06 2019
Every even number is the sum of two (possibly equal) terms. More specifically: terms a(1) through a(2^n) = 3^n sum to even numbers 2 times 1 through 3^n. Every even number is infinitely often the difference of two terms. Since the sequence is equal to 2*A005836(n) + 1, these properties follow immediately from similar properties of A005836 for every number. - Aad Thoen, Feb 17 2022
if A_n=(a(1),a(2),...,a(2^n)), then A_(n+1)=(A_n,A_n+2*3^n), similar to A003278. - Arie Bos, Jul 26 2022

Examples

			1 -> 3 -> 7,9 -> 19,21,25,27 -> ...
		

Crossrefs

Cf. A005823, A005836, A054591, A088917 (characteristic function), A173934, A190803, A191108.
Partial sums of A061393.
Similar formula as A003278, A_(n+1)=(A_n,A_n+2*3^n).

Programs

  • Mathematica
    h = 3; i = -2; j = 3; k = 0; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191106; regarding g, see note at A190803 *)
    b = (a + 2)/3; c = a/3; r = Range[1, 900];
    d = Intersection[b, r](* illustrates closure property *)
    e = Intersection[c, r](* illustrates closure property *)
    2 FromDigits[#, 3]&/@Tuples[{0, 1}, 7] + 1 (* Vincenzo Librandi, Jul 10 2019 *)

Formula

a(n) = 2*A005836(n) + 1. - Charles R Greathouse IV, Sep 06 2011
a(n) = A005823(n) + 1. - Vladimir Shevelev, Dec 17 2012
a(n) = (A191108(n) + 1)/2. - Peter Munn, Jul 09 2019

A055246 At step number k >= 1 the 2^(k-1) open intervals that are erased from [0,1] in the Cantor middle-third set construction are I(k,n) = (a(n)/3^k, (1+a(n))/3^k), n=1..2^(k-1).

Original entry on oeis.org

1, 7, 19, 25, 55, 61, 73, 79, 163, 169, 181, 187, 217, 223, 235, 241, 487, 493, 505, 511, 541, 547, 559, 565, 649, 655, 667, 673, 703, 709, 721, 727, 1459, 1465, 1477, 1483, 1513, 1519, 1531, 1537, 1621, 1627, 1639, 1645, 1675, 1681, 1693, 1699
Offset: 1

Views

Author

Wolfdieter Lang, May 23 2000

Keywords

Comments

Related to A005836. Gives boundaries of open intervals that have to be erased in the Cantor middle-third set construction.
Let g(n) = Sum_{i=0..n} (i*binomial(n+i,i)^3*binomial(n,i)^2) = A112035(n). Let b = {m>0 : g(m) != 0 (mod 3)}. Then b(n) = a(n). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 08 2004
Conjecture: Similarly to A191107, this increasing sequence is generated by the rules: a(1) = 1, and if x is in the sequence, then 3*x-2 and 3*x+4 are also in the sequence. - L. Edson Jeffery, Nov 17 2015

Examples

			k=1: (1/3, 2/3);
k=2: (1/9, 2/9), (7/9, 8/9);
k=3: (1/27, 2/27), (7/27, 8/27), (19/27, 20/27), (25/27, 26/27); ...
		

Crossrefs

Programs

  • Mathematica
    (* (Conjectured) Choose rows large enough to guarantee that all terms < max are generated. *)
    rows = 1000; max = 10^4; a[1] = {1}; i = 1; Do[a[n_] = {}; Do[If[1 < 3*a[n - 1][[k]] - 2 < max, AppendTo[a[n], 3*a[n - 1][[k]] - 2], Break]; If[3*a[n - 1][[k]] + 4 < max, AppendTo[a[n], 3*a[n - 1][[k]] + 4], Break], {k, Length[a[n - 1]]}]; If[a[n] == {}, Break, i++], {n, 2, 1000}]; a055246 = Take[Flatten[Table[a[n], {n, i}]], 48] (* L. Edson Jeffery, Nov 17 2015 *)
    Join[{1}, 1 + 6 Accumulate[Table[(3^IntegerExponent[n, 2] + 1)/2, {n, 60}]]] (* Vincenzo Librandi, Nov 26 2015 *)
  • PARI
    g(n)=sum(i=0,n,i*binomial(n+i,i)^3*binomial(n,i)^2);
    for (i=1,2000,if(Mod(g(i),3)<>0,print1(i,",")))
    
  • PARI
    a(n) = fromdigits(binary(n-1),3)*6 + 1; \\ Kevin Ryde, Apr 23 2021
    
  • Python
    def A055246(n): return int(bin(n-1)[2:],3)*6|1 # Chai Wah Wu, Jun 26 2025

Formula

a(n) = 1+6*A005836(n), n >= 1.
a(n) = 1+3*A005823(n), n >= 1.
a(n+1) = A074938(n) + A074939(n); A074938: odd numbers in A005836, A074939: even numbers in A005836. - Philippe Deléham, Jul 10 2005
Conjecture: a(n) = 2*A191107(n) - 1 = 6*A003278(n) - 5 = (a((2*n-1)*2^(k-1))+2)/3^k, k>0. - L. Edson Jeffery, Nov 25 2015

Extensions

Edited by N. J. A. Sloane, Nov 20 2015: used first comment to give more precise definition, and edited a comment at the suggestion of L. Edson Jeffery.

A094453 Numbers k such that binomial(2*k, k)/(k+2) is not an integer.

Original entry on oeis.org

1, 2, 4, 6, 7, 10, 13, 14, 25, 28, 30, 31, 34, 37, 40, 62, 79, 82, 85, 88, 91, 94, 106, 109, 112, 115, 118, 121, 126, 241, 244, 247, 250, 253, 254, 256, 268, 271, 274, 277, 280, 283, 322, 325, 328, 331, 334, 337, 349, 352, 355, 358, 361, 364, 510, 727, 730, 733
Offset: 1

Views

Author

Robert G. Wilson v, May 11 2004

Keywords

Comments

A191107 is a subsequence as the relevant terms of A000984 are not divisible by 3 (see the comments in A005836 and A191107). - Peter Munn, Aug 14 2023
Numbers k such that either k + 2 is a power of 2, or k + 2 is divisible by 3 and none of the base-3 digits of k + 2 are 2 except possibly the second-last. See link for proof. Thus the sequence is the union of the positive terms of A00984 and of 9*k-2, 9*k + 1 and 9*k + 4 for k in A005836. - Robert Israel, Nov 17 2024

Crossrefs

Programs

  • Maple
    filter:= proc(n) local r,L;
      r:= n+2;
      if r = 2^padic:-ordp(r,2) then true
      else
        if r mod 3 <> 0 then false
        else
          L:= convert(r,base,3);
          not member(2,L[3..-1])
      fi fi
    end proc:select(filter, [$1..1000]); # Robert Israel, Nov 17 2024
  • Mathematica
    Select[ Range[735], Mod[Binomial[2#, # ], (# + 2)] != 0 &]

A265161 Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (3/2)*(3^k - 1) + A265159(n,k), n,k >= 1.

Original entry on oeis.org

8, 35, 26, 89, 107, 80, 116, 269, 323, 242, 251, 350, 809, 971, 728, 278, 755, 1052, 2429, 2915, 2186, 332, 836, 2267, 3158, 7289, 8747, 6560, 359, 998, 2510, 6803, 9476, 21869, 26243, 19682, 737, 1079, 2996, 7532, 20411, 28430, 65609, 78731, 59048
Offset: 1

Views

Author

L. Edson Jeffery, Dec 03 2015

Keywords

Comments

Conjecture 1: The array contains without duplication all possible "gap numbers" as defined in A265100.

Examples

			Array A begins:
.      8    26    80    242    728    2186    6560    19682    59048
.     35   107   323    971   2915    8747   26243    78731   236195
.     89   269   809   2429   7289   21869   65609   196829   590489
.    116   350  1052   3158   9476   28430   85292   255878   767636
.    251   755  2267   6803  20411   61235  183707   551123  1653371
.    278   836  2510   7532  22598   67796  203390   610172  1830518
.    332   998  2996   8990  26972   80918  242756   728270  2184812
.    359  1079  3239   9719  29159   87479  262439   787319  2361959
.    737  2213  6641  19925  59777  179333  538001  1614005  4842017
		

Crossrefs

Programs

  • Mathematica
    (* Array: *)
    a005836[1] := 0; a005836[n_] := If[OddQ[n], 3*a005836[Floor[(n + 1)/2]], a005836[n - 1] + 1]; a265159[n_, k_] := 5 + 9*a005836[2^(k - 1)*(2 n - 1)]; a265161[n_, k_] := (3/2)*(3^k - 1) + a265159[n, k]; Grid[Table[a265161[n, k], {n, 9}, {k, 9}]]
    (* Array antidiagonal flattened: *)
    a005836[1] := 0; a005836[n_] := If[OddQ[n], 3*a005836[Floor[(n + 1)/2]], a005836[n - 1] + 1]; a265159[n_, k_] := 5 + 9*a005836[2^(k - 1)*(2 n - 1)]; a265161[n_, k_] := (3/2)*(3^k - 1) + a265159[n, k]; Flatten[Table[a265161[n - k + 1, k], {n, 9}, {k, n}]]

Formula

Conjecture 2: A(n,k) = A191107(n)*3^k - 1.

A338632 G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 3*x/(A(x) - 5*x/(A(x) - 7*x/(A(x) - 9*x/(A(x) - ...))))), a continued fraction relation.

Original entry on oeis.org

1, 1, 2, 14, 166, 2714, 55866, 1377942, 39493518, 1288115570, 47086272754, 1906554619166, 84711219819062, 4098314765667082, 214489189682087594, 12075596389435432230, 727783484288200558110, 46755528594469120151010, 3189788089674119448202722
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2020

Keywords

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 14*x^3 + 166*x^4 + 2714*x^5 + 55866*x^6 + 1377942*x^7 + 39493518*x^8 + 1288115570*x^9 + 47086272754*x^10 + ...
where
1 = A(x) - x/(A(x) - 3*x/(A(x) - 5*x/(A(x) - 7*x/(A(x) - 9*x/(A(x) - 11*x/(A(x) - 13*x/(A(x) - 15*x/(A(x) - 17*x/(A(x) - 19*x/(A(x) - ...)))))))))), a continued fraction relation.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (2*(#A-i)+1)*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = 2 (mod 4) for n > 1 (conjecture).
For n > 0, a(n) = 1 (mod 3) iff n = A191107(k) for some k >= 1 (conjecture).
For n > 0, a(n) = 2 (mod 3) iff n = A186776(k) for some k >= 2 where A186776 is the Stanley sequence S(0,2) (conjecture).
a(n) ~ 2^(2*n) * n^(n - 1/2) / (sqrt(Pi) * exp(n + 1/2)). - Vaclav Kotesovec, Nov 12 2020

A338636 G.f. A(x) satisfies: 1 = A(x) - x/(A(x) - 3^2*x/(A(x) - 5^2*x/(A(x) - 7^2*x/(A(x) - 9^2*x/(A(x) - ...))))), a continued fraction relation.

Original entry on oeis.org

1, 1, 8, 272, 19480, 2353568, 429016872, 110046546096, 37825128764472, 16793443888112960, 9358539226503013960, 6397425528561882140240, 5264539843826571207135320, 5134140710880677886077086432, 5855644914993764696284947092840
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2020

Keywords

Examples

			G.f. A(x) = 1 + x + 8*x^2 + 272*x^3 + 19480*x^4 + 2353568*x^5 + 429016872*x^6 + 110046546096*x^7 + 37825128764472*x^8 + 16793443888112960*x^9 + ...
where
1 = A(x) - x/(A(x) - 3^2*x/(A(x) - 5^2*x/(A(x) - 7^2*x/(A(x) - 9^2*x/(A(x) - 11^2*x/(A(x) - 13^2*x/(A(x) - 15^2*x/(A(x) - 17^2*x/(A(x) - 19^2*x/(A(x) - ...)))))))))), a continued fraction relation.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],CF=1); for(i=1,n, A=concat(A,0); for(i=1,#A, CF = Ser(A) - (2*(#A-i)+1)^2*x/CF ); A[#A] = -polcoeff(CF,#A-1) );A[n+1] }
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = 0 (mod 8) for n > 1 (conjecture).
For n > 0, a(n) = 1 (mod 3) iff n = A191107(k) for some k >= 1 (conjecture).
For n > 0, a(n) = 2 (mod 3) iff n = A186776(k) for some k >= 2 where A186776 is the Stanley sequence S(0,2) (conjecture).
a(n) ~ 2^(6*n + 1) * n^(2*n - 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Nov 12 2020

A326604 G.f. A(x) satisfies x / Series_Reversion(x*A(x)) = (2*A(x) + 1+x)/3.

Original entry on oeis.org

1, 1, 3, 21, 231, 3333, 58167, 1175877, 26827623, 679078677, 18844334727, 568229240901, 18491559492999, 645850960844469, 24099045218945031, 956889503377128261, 40291822946545245927, 1793614919867776690389, 84177429562216608349959, 4154548653801498090246597, 215137302566817565660007367, 11664210072689092804458508533
Offset: 0

Views

Author

Paul D. Hanna, Sep 21 2019

Keywords

Comments

a(k) = 6 (mod 9) when k = A191107(n) for n > 1 (conjecture).
a(n) = 3*A249933(n) for n > 1.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 231*x^4 + 3333*x^5 + 58167*x^6 + 1175877*x^7 + 26827623*x^8 + 679078677*x^9 + 18844334727*x^10 +...
such that
x/Series_Reversion(x*A(x)) = (2*A(x) + 1+x)/3 = 1 + x + 2*x^2 + 14*x^3 + 154*x^4 + 2222*x^5 + 38778*x^6 + 783918*x^7 + 17885082*x^8 + 452719118*x^9 + ...
ITERATIONS OF x*A(x).
Let G(x) = x*A(x), then
A(x) = 1 + G(x)/3 + G(G(x))*2/3^2 + G(G(G(x)))*2^2/3^3 + G(G(G(G(x))))*2^3/3^4 + G(G(G(G(G(x)))))*2^4/3^5 +...
The table of coefficients in the iterations of x*A(x) begin:
[1, 1, 3, 21, 231, 3333, 58167, 1175877, 26827623, ...];
[1, 2, 8, 58, 630, 8958, 154530, 3096330, 70161318, ...];
[1, 3, 15, 117, 1285, 18167, 310735, 6177745, 139076385, ...];
[1, 4, 24, 204, 2308, 32800, 559124, 11053668, 247451528, ...];
[1, 5, 35, 325, 3835, 55365, 946623, 18671961, 416326935, ...];
[1, 6, 48, 486, 6026, 89158, 1539350, 30423134, 677231222, ...];
[1, 7, 63, 693, 9065, 138383, 2427943, 48304893, 1076756889, ...];
[1, 8, 80, 952, 13160, 208272, 3733608, 75127944, 1682704256, ...];
[1, 9, 99, 1269, 18543, 305205, 5614887, 114768093, 2592154167, ...]; ...
in which the following sum along column k equals a(k+1):
a(2) = 3 = 1/3 + 2*2/9 + 3*4/27 + 4*8/81 + 5*16/243 + 6*32/729 +...
a(3) = 21 = 3/3 + 8*2/9 + 15*4/27 + 24*8/81 + 35*16/243 + 48*32/729 + ...
a(4) = 231 = 21/3 + 58*2/9 + 117*4/27 + 204*8/81 + 325*16/243 + 486*32/729 +...
a(5) = 3333 = 231*2/3 + 630*2/9 + 1285*4/27 + 2308*8/81 + 3835*16/243 + 6026*32/729 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 21; sol = {a[0] -> 1}; Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + 2 A[x A[x] + O[x]^(n+1)])/(3-x), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 03 2019 *)
  • PARI
    /* Prints N terms using x/Series_Reversion(x*A(x)) = (2*A(x) + 1+x)/3 */
    N = 30; {A=[1, 1]; for(i=1, N, A = concat(A, -3*Vec(x/serreverse(x*Ser(concat(A, 0))))[#A+1]); print1(i, ", ") ); A}

Formula

G.f. A(x) satisfies:
(1) A( 3*x/(2*A(x) + 1+x) ) = (2*A(x) + 1+x)/3.
(2) A(x) = (1 + 2*A(x*A(x))) / (3-x).
(3) A(x) = 1 + Sum_{n>=1} G^n(x) * 2^(n-1)/3^n where G(x) = x*A(x) and G^n(x) = G^{n-1}(x*A(x)) denotes iteration with G^0(x) = x.

A356426 Even bisection of A003278.

Original entry on oeis.org

2, 5, 11, 14, 29, 32, 38, 41, 83, 86, 92, 95, 110, 113, 119, 122, 245, 248, 254, 257, 272, 275, 281, 284, 326, 329, 335, 338, 353, 356, 362, 365, 731, 734, 740, 743, 758, 761, 767, 770, 812, 815, 821, 824, 839, 842, 848, 851, 974, 977, 983, 986, 1001, 1004, 1010, 1013, 1055, 1058
Offset: 1

Views

Author

Arie Bos, Aug 07 2022

Keywords

Comments

Complement sequence of A191107 in A003278.

Crossrefs

Programs

Formula

a(n) = A003278(2n).
Showing 1-9 of 9 results.