cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 73 results. Next

A189822 Positions of 1 in A189820; complement of A003278.

Original entry on oeis.org

3, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 33, 34, 35, 36, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 84
Offset: 1

Views

Author

Clark Kimberling, Apr 28 2011

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 0; h = 50;
    Table[a[3 k - 2] = a[k], {k, 1, h}];
    Table[a[3 k - 1] = a[k], {k, 1, h}];
    Table[a[3 k] = 1, {k, 1, h}];
    Flatten[Position[%%, 1]]
  • Python
    from gmpy2 import digits
    def A189822(n):
        def f(x):
            l = (s:=digits(x-1,3)).find('2')
            if l >= 0: s = s[:l]+'1'*(len(s)-l)
            return n+1+int(s,2)
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 05 2024

A356426 Even bisection of A003278.

Original entry on oeis.org

2, 5, 11, 14, 29, 32, 38, 41, 83, 86, 92, 95, 110, 113, 119, 122, 245, 248, 254, 257, 272, 275, 281, 284, 326, 329, 335, 338, 353, 356, 362, 365, 731, 734, 740, 743, 758, 761, 767, 770, 812, 815, 821, 824, 839, 842, 848, 851, 974, 977, 983, 986, 1001, 1004, 1010, 1013, 1055, 1058
Offset: 1

Views

Author

Arie Bos, Aug 07 2022

Keywords

Comments

Complement sequence of A191107 in A003278.

Crossrefs

Programs

Formula

a(n) = A003278(2n).

A004792 Erroneous version of A003278.

Original entry on oeis.org

1, 2, 4, 5, 10, 11, 13, 14, 29, 30, 32, 33, 38, 39, 41, 42, 85, 86, 88, 89, 94, 95, 97, 98, 112, 113, 115, 116, 121, 122, 124, 125, 251, 252, 254, 255, 260, 261, 263, 264
Offset: 1

Views

Author

Keywords

A001511 The ruler function: exponent of the highest power of 2 dividing 2n. Equivalently, the 2-adic valuation of 2n.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1
Offset: 1

Views

Author

Keywords

Comments

Number of 2's dividing 2*n.
a(n) is equivalently the exponent of the smallest power of 2 which does not divide n. - David James Sycamore, Oct 02 2023
a(n) - 1 is the number of trailing zeros in the binary expansion of n.
If you are counting in binary and the least significant bit is numbered 1, the next bit is 2, etc., a(n) is the bit that is incremented when increasing from n-1 to n. - Jud McCranie, Apr 26 2004
Number of steps to reach an integer starting with (n+1)/2 and using the map x -> x*ceiling(x) (cf. A073524).
a(n) is the number of the disk to be moved at the n-th step of the optimal solution to Towers of Hanoi problem (comment from Andreas M. Hinz).
Shows which bit to flip when creating the binary reflected Gray code (bits are numbered from the right, offset is 1). This is essentially equivalent to Hinz's comment. - Adam Kertesz, Jul 28 2001
a(n) is the Hamming distance between n and n-1 (in binary). This is equivalent to Kertesz's comments above. - Tak-Shing Chan (chan12(AT)alumni.usc.edu), Feb 25 2003
Let S(0) = {1}, S(n) = {S(n-1), S(n-1)-{x}, x+1} where x = last term of S(n-1); sequence gives S(infinity). - Benoit Cloitre, Jun 14 2003
The sum of all terms up to and including the first occurrence of m is 2^m-1. - Donald Sampson (marsquo(AT)hotmail.com), Dec 01 2003
m appears every 2^m terms starting with the 2^(m-1)th term. - Donald Sampson (marsquo(AT)hotmail.com), Dec 08 2003
Sequence read mod 4 gives A092412. - Philippe Deléham, Mar 28 2004
If q = 2n/2^A001511(n) and if b(m) is defined by b(0)=q-1 and b(m)=2*b(m-1)+1, then 2n = b(A001511(n)) + 1. - Gerald McGarvey, Dec 18 2004
Repeating pattern ABACABADABACABAE ... - Jeremy Gardiner, Jan 16 2005
Relation to C(n) = Collatz function iteration using only odd steps: a(n) is the number of right bits set in binary representation of A004767(n) (numbers of the form 4*m+3). So for m=A004767(n) it follows that there are exactly a(n) recursive steps where m
Between every two instances of any positive integer m there are exactly m distinct values (1 through m-1 and one value greater than m). - Franklin T. Adams-Watters, Sep 18 2006
Number of divisors of n of the form 2^k. - Giovanni Teofilatto, Jul 25 2007
Every prefix up to (but not including) the first occurrence of some k >= 2 is a palindrome. - Gary W. Adamson, Sep 24 2008
1 interleaved with (2 interleaved with (3 interleaved with ( ... ))). - Eric D. Burgess (ericdb(AT)gmail.com), Oct 17 2009
A054525 (Möbius transform) * A001511 = A036987 = A047999^(-1) * A001511. - Gary W. Adamson, Oct 26 2009
Equals A051731 * A036987, (inverse Möbius transform of the Fredholm-Rueppel sequence) = A047999 * A036987. - Gary W. Adamson, Oct 26 2009
Cf. A173238, showing links between generalized ruler functions and A000041. - Gary W. Adamson, Feb 14 2010
Given A000041, P(x) = A(x)/A(x^2) with P(x) = (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...), A(x) = (1 + x + 3x^2 + 4x^3 + 10x^4 + 13x^5 + ...), A(x^2) = (1 + x^2 + 3x^4 + 4x^6 + 10x^8 + ...), where A092119 = (1, 1, 3, 4, 10, ...) = Euler transform of the ruler sequence, A001511. - Gary W. Adamson, Feb 11 2010
Subtracting 1 from every term and deleting any 0's yields the same sequence, A001511. - Ben Branman, Dec 28 2011
In the listing of the compositions of n as lists in lexicographic order, a(k) is the last part of composition(k) for all k <= 2^(n-1) and all n, see example. - Joerg Arndt, Nov 12 2012
According to Hinz, et al. (see links), this sequence was studied by Louis Gros in his 1872 pamphlet "Théorie du Baguenodier" and has therefore been called the Gros sequence.
First n terms comprise least squarefree word of length n using positive integers, where "squarefree" means that the word contains no consecutive identical subwords; e.g., 1 contains no square; 11 contains a square but 12 does not; 121 contains no square; both 1211 and 1212 have squares but 1213 does not; etc. - Clark Kimberling, Sep 05 2013
Length of 0-run starting from 2 (10, 100, 110, 1000, 1010, ...), or length of 1-run starting from 1 (1, 11, 101, 111, 1001, 1011, ...) of every second number, from right to left in binary representation. - Armands Strazds, Apr 13 2017
a(n) is also the frequency of the largest part in the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2,2,2,1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 24 2017
As A000005(n) equals the number of even divisors of 2n and A001227(n) = A001227(2n), the formula A001511(n) = A000005(n)/A001227(n) might be read as "The number of even divisors of 2n is always divisible by the number of odd divisors of 2n" (where number of divisors means sum of zeroth powers of divisors). Conjecture: For any nonnegative integer k, the sum of the k-th powers of even divisors of n is always divisible by the sum of the k-th powers of odd divisors of n. - Ivan N. Ianakiev, Jul 06 2019
From Benoit Cloitre, Jul 14 2022: (Start)
To construct the sequence, start from 1's separated by a place 1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,...
Then put the 2's in every other remaining place
1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,...
Then the 3's in every other remaining place
1,2,1,3,1,2,1,,1,2,1,3,1,2,1,,1,2,1,3,1,2,1,,1,2,1,...
Then the 4's in every other remaining place
1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,,1,2,1,3,1,2,1,4,1,2,1,...
By iterating this process, we get the ruler function 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,... (End)
a(n) is the least positive integer k for which there does not exist i+j=n and a(i)=a(j)=k (cf. A322523). - Rémy Sigrist and Jianing Song, Aug 23 2022
a(n) is the smallest positive integer that does not occur in the coincidences of the sequence so far a(1..n-1) and its reverse. - Neal Gersh Tolunsky, Jan 18 2023
The geometric mean of this sequence approaches the Somos constant (A112302). - Jwalin Bhatt, Jan 31 2025

Examples

			For example, 2^1|2, 2^2|4, 2^1|6, 2^3|8, 2^1|10, 2^2|12, ... giving the initial terms 1, 2, 1, 3, 1, 2, ...
From _Omar E. Pol_, Jun 12 2009: (Start)
Triangle begins:
1;
2,1;
3,1,2,1;
4,1,2,1,3,1,2,1;
5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1;
6,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1;
7,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6,1,2,1,3,...
(End)
S(0) = {} S(1) = 1 S(2) = 1, 2, 1 S(3) = 1, 2, 1, 3, 1, 2, 1 S(4) = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1. - Yann David (yann_david(AT)hotmail.com), Mar 21 2010
From _Joerg Arndt_, Nov 12 2012: (Start)
The 16 compositions of 5 as lists in lexicographic order:
[ n]  a(n)  composition
[ 1]  [ 1]  [ 1 1 1 1 1 ]
[ 2]  [ 2]  [ 1 1 1 2 ]
[ 3]  [ 1]  [ 1 1 2 1 ]
[ 4]  [ 3]  [ 1 1 3 ]
[ 5]  [ 1]  [ 1 2 1 1 ]
[ 6]  [ 2]  [ 1 2 2 ]
[ 7]  [ 1]  [ 1 3 1 ]
[ 8]  [ 4]  [ 1 4 ]
[ 9]  [ 1]  [ 2 1 1 1 ]
[10]  [ 2]  [ 2 1 2 ]
[11]  [ 1]  [ 2 2 1 ]
[12]  [ 3]  [ 2 3 ]
[13]  [ 1]  [ 3 1 1 ]
[14]  [ 2]  [ 3 2 ]
[15]  [ 1]  [ 4 1 ]
[16]  [ 5]  [ 5 ]
a(n) is the last part in each list.
(End)
From _Omar E. Pol_, Aug 20 2013: (Start)
Also written as a triangle in which the right border gives A000027 and row lengths give A011782 and row sums give A000079 the sequence begins:
1;
2;
1,3;
1,2,1,4;
1,2,1,3,1,2,1,5;
1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6;
1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,7;
(End)
G.f. = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 2*x^6 + x^7 + 4*x^8 + x^9 + 2*x^10 + ...
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.
  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 2nd ed., 2001-2003; see Dim- and Dim+ on p. 98; Dividing Rulers, on pp. 436-437; The Ruler Game, pp. 469-470; Ruler Fours, Fives, ... Fifteens on p. 470.
  • L. Gros, Théorie du Baguenodier, Aimé Vingtrinier, Lyon, 1872.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E22.
  • A. M. Hinz, The Tower of Hanoi, in Algebras and combinatorics (Hong Kong, 1997), 277-289, Springer, Singapore, 1999.
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.1.3, Problem 41, p. 589.
  • Andrew Schloss, "Towers of Hanoi" composition, in The Digital Domain. Elektra/Asylum Records 9 60303-2, 1983. Works by Jaffe (Finale to "Silicon Valley Breakdown"), McNabb ("Love in the Asylum"), Schloss ("Towers of Hanoi"), Mattox ("Shaman"), Rush, Moorer ("Lions are Growing") and others.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 1 of table A050600.
Sequence read mod 2 gives A035263.
Sequence is bisection of A007814, A050603, A050604, A067029, A089309.
This is Guy Steele's sequence GS(4, 2) (see A135416).
Cf. A005187 (partial sums), A085058 (bisection), A112302 (geometric mean), A171977 (2^a(n)).
Cf. A287896, A002487, A209229 (Mobius trans.), A092673 (Dirichlet inv.).
Cf. generalized ruler functions for k=3,4,5: A051064, A115362, A055457.

Programs

  • Haskell
    a001511 n = length $ takeWhile ((== 0) . (mod n)) a000079_list
    -- Reinhard Zumkeller, Sep 27 2011
    
  • Haskell
    a001511 n | odd n = 1 | otherwise = 1 + a001511 (n `div` 2)
    -- Walt Rorie-Baety, Mar 22 2013
    
  • MATLAB
    nmax=5;r=1;for n=2:nmax;r=[r n r];end % Adriano Caroli, Feb 26 2016
    
  • Magma
    [Valuation(2*n,2): n in [1..105]]; // Bruno Berselli, Nov 23 2015
    
  • Maple
    A001511 := n->2-wt(n)+wt(n-1); # where wt is defined in A000120
    # This is the binary logarithm of the denominator of (256^n-1)B_{8n}/n, in Maple parlance a := n -> log[2](denom((256^n-1)*bernoulli(8*n)/n)). - Peter Luschny, May 31 2009
    A001511 := n -> padic[ordp](2*n,2): seq(A001511(n), n=1..105);  # Peter Luschny, Nov 26 2010
    a:= n-> ilog2((Bits[Xor](2*n, 2*n-1)+1)/2): seq(a(n), n=1..50);  # Gary Detlefs, Dec 13 2018
  • Mathematica
    Array[ If[ Mod[ #, 2] == 0, FactorInteger[ # ][[1, 2]], 0] &, 105] + 1 (* or *)
    Nest[ Flatten[ # /. a_Integer -> {1, a + 1}] &, {1}, 7] (* Robert G. Wilson v, Mar 04 2005 *)
    IntegerExponent[2*n, 2] (* Alexander R. Povolotsky, Aug 19 2011 *)
    myHammingDistance[n_, m_] := Module[{g = Max[m, n], h = Min[m, n]}, b1 = IntegerDigits[g, 2]; b2 = IntegerDigits[h, 2, Length[b1]]; HammingDistance[b1, b2]] (* Vladimir Shevelev A206853 *) Table[ myHammingDistance[n, n - 1], {n, 111}] (* Robert G. Wilson v, Apr 05 2012 *)
    Table[Position[Reverse[IntegerDigits[n,2]],1,1,1],{n,110}]//Flatten (* Harvey P. Dale, Aug 18 2017 *)
  • PARI
    a(n) = sum(k=0,floor(log(n)/log(2)),floor(n/2^k)-floor((n-1)/2^k)) /* Ralf Stephan */
    
  • PARI
    a(n)=if(n%2,1,factor(n)[1,2]+1) /* Jon Perry, Jun 06 2004 */
    
  • PARI
    {a(n) = if( n, valuation(n, 2) + 1, 0)}; /* Michael Somos, Sep 30 2006 */
    
  • PARI
    {a(n)=if(n==1,1,polcoeff(x-sum(k=1, n-1, a(k)*x^k*(1-x^k)*(1-x+x*O(x^n))), n))} /* Paul D. Hanna, Jun 22 2007 */
    
  • Python
    def a(n): return bin(n)[2:][::-1].index("1") + 1 # Indranil Ghosh, May 11 2017
    
  • Python
    A001511 = lambda n: (n&-n).bit_length() # M. F. Hasler, Apr 09 2020
    
  • Python
    def A001511(n): return (~n & n-1).bit_length()+1 # Chai Wah Wu, Jul 01 2022
    
  • Sage
    [valuation(2*n,2) for n in (1..105)]  # Bruno Berselli, Nov 23 2015
    
  • Scheme
    (define (A001511 n) (let loop ((n n) (e 1)) (if (odd? n) e (loop (/ n 2) (+ 1 e))))) ;; Antti Karttunen, Oct 06 2017

Formula

a(n) = A007814(n) + 1 = A007814(2*n).
a(2*n+1) = 1; a(2*n) = 1 + a(n). - Philippe Deléham, Dec 08 2003
a(n) = 2 - A000120(n) + A000120(n-1), n >= 1. - Daniele Parisse
a(n) = 1 + log_2(abs(A003188(n) - A003188(n-1))).
Multiplicative with a(p^e) = e+1 if p = 2; 1 if p > 2. - David W. Wilson, Aug 01 2001
For any real x > 1/2: lim_{N->infinity} (1/N)*Sum_{n=1..N} x^(-a(n)) = 1/(2*x-1); also lim_{N->infinity} (1/N)*Sum_{n=1..N} 1/a(n) = log(2). - Benoit Cloitre, Nov 16 2001
s(n) = Sum_{k=1..n} a(k) is asymptotic to 2*n since s(n) = 2*n - A000120(n). - Benoit Cloitre, Aug 31 2002
For any n >= 0, for any m >= 1, a(2^m*n + 2^(m-1)) = m. - Benoit Cloitre, Nov 24 2002
a(n) = Sum_{d divides n and d is odd} mu(d)*tau(n/d). - Vladeta Jovovic, Dec 04 2002
G.f.: A(x) = Sum_{k>=0} x^(2^k)/(1-x^(2^k)). - Ralf Stephan, Dec 24 2002
a(1) = 1; for n > 1, a(n) = a(n-1) + (-1)^n*a(floor(n/2)). - Vladeta Jovovic, Apr 25 2003
A fixed point of the mapping 1->12; 2->13; 3->14; 4->15; 5->16; ... . - Philippe Deléham, Dec 13 2003
Product_{k>0} (1+x^k)^a(k) is g.f. for A000041(). - Vladeta Jovovic, Mar 26 2004
G.f. A(x) satisfies A(x) = A(x^2) + x/(1-x). - Franklin T. Adams-Watters, Feb 09 2006
a(A118413(n,k)) = A002260(n,k); = a(A118416(n,k)) = A002024(n,k); a(A014480(n)) = A003602(A014480(n)). - Reinhard Zumkeller, Apr 27 2006
Ordinal transform of A003602. - Franklin T. Adams-Watters, Aug 28 2006 (The ordinal transform of a sequence b_0, b_1, b_2, ... is the sequence a_0, a_1, a_2, ... where a_n is the number of times b_n has occurred in {b_0 ... b_n}.)
Could be extended to n <= 0 using a(-n) = a(n), a(0) = 0, a(2*n) = a(n)+1 unless n=0. - Michael Somos, Sep 30 2006
A094267(2*n) = A050603(2*n) = A050603(2*n + 1) = a(n). - Michael Somos, Sep 30 2006
Sequence = A129360 * A000005 = M*V, where M = an infinite lower triangular matrix and V = d(n) as a vector: [1, 2, 2, 3, 2, 4, ...]. - Gary W. Adamson, Apr 15 2007
Row sums of triangle A130093. - Gary W. Adamson, May 13 2007
Dirichlet g.f.: zeta(s)*2^s/(2^s-1). - Ralf Stephan, Jun 17 2007
a(n) = -Sum_{d divides n} mu(2*d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
G.f.: x/(1-x) = Sum_{n>=1} a(n)*x^n*( 1 - x^n ). - Paul D. Hanna, Jun 22 2007
2*n = 2^a(n)* A000265(n). - Eric Desbiaux, May 14 2009 [corrected by Alejandro Erickson, Apr 17 2012]
Multiplicative with a(2^k) = k + 1, a(p^k) = 1 for any odd prime p. - Franklin T. Adams-Watters, Jun 09 2009
With S(n): 2^n - 1 first elements of the sequence then S(0) = {} (empty list) and if n > 0, S(n) = S(n-1), n, S(n-1). - Yann David (yann_david(AT)hotmail.com), Mar 21 2010
a(n) = log_2(A046161(n)/A046161(n-1)). - Johannes W. Meijer, Nov 04 2012
a((2*n-1)*2^p) = p+1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 05 2013
a(n+1) = 1 + Sum_{j=0..ceiling(log_2(n+1))} (j * (1 - abs(sign((n mod 2^(j + 1)) - 2^j + 1)))). - Enrico Borba, Oct 01 2015
Conjecture: a(n) = A181988(n)/A003602(n). - L. Edson Jeffery, Nov 21 2015
a(n) = log_2(A006519(n)) + 1. - Doug Bell, Jun 02 2017
Inverse Moebius transform of A209229. - Andrew Howroyd, Aug 04 2018
a(n) = 1 + (A183063(n)/A001227(n)). - Omar E. Pol, Nov 06 2018 (after Franklin T. Adams-Watters)
a(n) = log_2((Xor(2*n,2*n-1)+1)/2). - Gary Detlefs, Dec 13 2018
(2^(a(n)-1)-1)*(n mod 4) = 2*floor(((n+1) mod 4)/3). - Gary Detlefs, Dec 14 2018
a(n) = A000005(n)/A001227(n). - Ivan N. Ianakiev, Jul 05 2019
a(n) = Sum_{j=1..r} (j/2^j)*(Product_{k=1..j} (1 - (-1)^floor( (n+2^(j-1))/2^(k-1) ))), for n < a predefined 2^r. - Adriano Caroli, Sep 30 2019

Extensions

Name edited following suggestion by David James Sycamore, Oct 05 2023

A005836 Numbers whose base-3 representation contains no 2.

Original entry on oeis.org

0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, 81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121, 243, 244, 246, 247, 252, 253, 255, 256, 270, 271, 273, 274, 279, 280, 282, 283, 324, 325, 327, 328, 333, 334, 336, 337, 351, 352
Offset: 1

Comments

3 does not divide binomial(2s, s) if and only if s is a member of this sequence, where binomial(2s, s) = A000984(s) are the central binomial coefficients.
This is the lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 3. - Robert Craigen (craigenr(AT)cc.umanitoba.ca), Jan 29 2001
In the notation of A185256 this is the Stanley Sequence S(0,1). - N. J. A. Sloane, Mar 19 2010
Complement of A074940. - Reinhard Zumkeller, Mar 23 2003
Sums of distinct powers of 3. - Ralf Stephan, Apr 27 2003
Numbers n such that central trinomial coefficient A002426(n) == 1 (mod 3). - Emeric Deutsch and Bruce E. Sagan, Dec 04 2003
A039966(a(n)+1) = 1; A104406(n) = number of terms <= n.
Subsequence of A125292; A125291(a(n)) = 1 for n>1. - Reinhard Zumkeller, Nov 26 2006
Also final value of n - 1 written in base 2 and then read in base 3 and with finally the result translated in base 10. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n) modulo 2 is the Thue-Morse sequence A010060. - Dennis Tseng, Jul 16 2009
Also numbers such that the balanced ternary representation is the same as the base 3 representation. - Alonso del Arte, Feb 25 2011
Fixed point of the morphism: 0 -> 01; 1 -> 34; 2 -> 67; ...; n -> (3n)(3n+1), starting from a(1) = 0. - Philippe Deléham, Oct 22 2011
It appears that this sequence lists the values of n which satisfy the condition sum(binomial(n, k)^(2*j), k = 0..n) mod 3 <> 0, for any j, with offset 0. See Maple code. - Gary Detlefs, Nov 28 2011
Also, it follows from the above comment by Philippe Lallouet that the sequence must be generated by the rules: a(1) = 0, and if m is in the sequence then so are 3*m and 3*m + 1. - L. Edson Jeffery, Nov 20 2015
Add 1 to each term and we get A003278. - N. J. A. Sloane, Dec 01 2019

Examples

			12 is a term because 12 = 110_3.
This sequence regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ...:
   0
   1
   3,  4
   9, 10, 12, 13
  27, 28, 30, 31, 36, 37, 39, 40
  81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121
... - _Philippe Deléham_, Jun 06 2015
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section E10, pp. 317-323.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A039966 (characteristic function).
For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Row 3 of array A104257.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
See also A000452.

Programs

  • Haskell
    a005836 n = a005836_list !! (n-1)
    a005836_list = filter ((== 1) . a039966) [0..]
    -- Reinhard Zumkeller, Jun 09 2012, Sep 29 2011
    
  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 2)
            r += b * q
            b *= 3
        end
    r end; [a(n) for n in 0:57] |> println # Peter Luschny, Jan 03 2021
  • Maple
    t := (j, n) -> add(binomial(n,k)^j, k=0..n):
    for i from 1 to 400 do
        if(t(4,i) mod 3 <>0) then print(i) fi
    od; # Gary Detlefs, Nov 28 2011
    # alternative Maple program:
    a:= proc(n) option remember: local k, m:
    if n=1 then 0 elif n=2 then 1 elif n>2 then k:=floor(log[2](n-1)): m:=n-2^k: procname(m)+3^k: fi: end proc:
    seq(a(n), n=1.. 20); # Paul Weisenhorn, Mar 22 2020
    # third Maple program:
    a:= n-> `if`(n=1, 0, irem(n-1, 2, 'q')+3*a(q+1)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 26 2022
  • Mathematica
    Table[FromDigits[IntegerDigits[k, 2], 3], {k, 60}]
    Select[Range[0, 400], DigitCount[#, 3, 2] == 0 &] (* Harvey P. Dale, Jan 04 2012 *)
    Join[{0}, Accumulate[Table[(3^IntegerExponent[n, 2] + 1)/2, {n, 57}]]] (* IWABUCHI Yu(u)ki, Aug 01 2012 *)
    FromDigits[#,3]&/@Tuples[{0,1},7] (* Harvey P. Dale, May 10 2019 *)
  • PARI
    A=vector(100);for(n=2,#A,A[n]=if(n%2,3*A[n\2+1],A[n-1]+1));A \\ Charles R Greathouse IV, Jul 24 2012
    
  • PARI
    is(n)=while(n,if(n%3>1,return(0));n\=3);1 \\ Charles R Greathouse IV, Mar 07 2013
    
  • PARI
    a(n) = fromdigits(binary(n-1),3);  \\ Gheorghe Coserea, Jun 15 2018
    
  • Python
    def A005836(n):
        return int(format(n-1,'b'),3) # Chai Wah Wu, Jan 04 2015
    

Formula

a(n) = A005823(n)/2 = A003278(n)-1 = A033159(n)-2 = A033162(n)-3.
Numbers n such that the coefficient of x^n is > 0 in prod (k >= 0, 1 + x^(3^k)). - Benoit Cloitre, Jul 29 2003
a(n+1) = Sum_{k=0..m} b(k)* 3^k and n = Sum( b(k)* 2^k ).
a(2n+1) = 3a(n+1), a(2n+2) = a(2n+1) + 1, a(0) = 0.
a(n+1) = 3*a(floor(n/2)) + n - 2*floor(n/2). - Ralf Stephan, Apr 27 2003
G.f.: (x/(1-x)) * Sum_{k>=0} 3^k*x^2^k/(1+x^2^k). - Ralf Stephan, Apr 27 2003
a(n) = Sum_{k = 1..n-1} (1 + 3^A007814(k)) / 2. - Philippe Deléham, Jul 09 2005
From Reinhard Zumkeller, Mar 02 2008: (Start)
A081603(a(n)) = 0.
If the offset were changed to zero, then: a(0) = 0, a(n+1) = f(a(n)+1, a(n)+1) where f(x, y) = if x < 3 and x <> 2 then y else if x mod 3 = 2 then f(y+1, y+1) else f(floor(x/3), y). (End)
With offset a(0) = 0: a(n) = Sum_{k>=0} A030308(n,k)*3^k. - Philippe Deléham, Oct 15 2011
a(2^n) = A003462(n). - Philippe Deléham, Jun 06 2015
We have liminf_{n->infinity} a(n)/n^(log(3)/log(2)) = 1/2 and limsup_{n->infinity} a(n)/n^(log(3)/log(2)) = 1. - Gheorghe Coserea, Sep 13 2015
a(2^k+m) = a(m) + 3^k with 1 <= m <= 2^k and 1 <= k, a(1)=0, a(2)=1. - Paul Weisenhorn, Mar 22 2020
Sum_{n>=2} 1/a(n) = 2.682853110966175430853916904584699374821677091415714815171756609672281184705... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022
A065361(a(n)) = n-1. - Rémy Sigrist, Feb 06 2023
a(n) ≍ n^k, where k = log 3/log 2 = 1.5849625007. (I believe the constant varies from 1/2 to 1.) - Charles R Greathouse IV, Mar 29 2024

Extensions

Offset corrected by N. J. A. Sloane, Mar 02 2008
Edited by the Associate Editors of the OEIS, Apr 07 2009

A229037 The "forest fire": sequence of positive integers where each is chosen to be as small as possible subject to the condition that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form an arithmetic progression.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 9, 4, 4, 5, 5, 10, 5, 5, 10, 2, 10, 13, 11, 10, 8, 11, 13, 10, 12, 10, 10, 12, 10, 11, 14, 20, 13
Offset: 1

Author

Jack W Grahl, Sep 11 2013

Keywords

Comments

Added name "forest fire" to make it easier to locate this sequence. - N. J. A. Sloane, Sep 03 2019
This sequence and A235383 and A235265 were winners in the best new sequence contest held at the OEIS Foundation booth at the 2014 AMS/MAA Joint Mathematics Meetings. - T. D. Noe, Jan 20 2014
See A236246 for indices n such that a(n)=1. - M. F. Hasler, Jan 20 2014
See A241673 for indices n such that a(n)=2^k. - Reinhard Zumkeller, Apr 26 2014
The graph (for up to n = 10000) has an eerie similarity (why?) to the distribution of rising smoke particles subjected to a lateral wind, and where the particles emanate from randomly distributed burning areas in a fire in a forest or field. - Daniel Forgues, Jan 21 2014
The graph (up to n = 100000) appears to have a fractal structure. The dense areas are not random but seem to repeat, approximately doubling in width and height each time. - Daniel Forgues, Jan 21 2014
a(A241752(n)) = n and a(m) != n for m < A241752(n). - Reinhard Zumkeller, Apr 28 2014
The indices n such that a(n) = 1 are given by A236313 (relative spacing) up to 19 terms, and A003278 (directly) up to 20 terms. If just placing ones, the 21st 1 would be n=91. The sequence A003278 fails at n=91 because the numbers filling the gaps create an arithmetic progression with a(27)=9, a(59)=5 and a(91)=1. Additionally, if you look at indices n starting at the first instance of 4 or 5, A003278/A236313 provide possible indices for a(n)=4 or a(n)=5, with some indexes instead filled by numbers < (4,5). A003278/A236313 also fail to predict indices for a(n)=4 or a(n)=5 by the ~20th term. - Daniel Putt, Sep 29 2022

Crossrefs

Cf. A094870, A362942 (partial sums).
For a variant see A309890.
A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

Programs

  • Haskell
    import Data.IntMap (empty, (!), insert)
    a229037 n = a229037_list !! (n-1)
    a229037_list = f 0 empty  where
       f i m = y : f (i + 1) (insert (i + 1) y m) where
         y = head [z | z <- [1..],
                       all (\k -> z + m ! (i - k) /= 2 * m ! (i - k `div` 2))
                           [1, 3 .. i - 1]]
    -- Reinhard Zumkeller, Apr 26 2014
    
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{z = 1}, While[Catch[ Do[If[z == 2*a[n-k] - a[n-2*k], Throw@True], {k, Floor[(n-1)/2]}]; False], z++]; z]; a /@ Range[100] (* Giovanni Resta, Jan 01 2014 *)
  • PARI
    step(v)=my(bad=List(),n=#v+1,t); for(d=1,#v\2,t=2*v[n-d]-v[n-2*d]; if(t>0, listput(bad,t))); bad=Set(bad); for(i=1,#bad, if(bad[i]!=i, return(i))); #bad+1
    first(n)=my(v=List([1])); while(n--, listput(v, step(v))); Vec(v) \\ Charles R Greathouse IV, Jan 21 2014
    
  • Python
    A229037_list = []
    for n in range(10**6):
        i, j, b = 1, 1, set()
        while n-2*i >= 0:
            b.add(2*A229037_list[n-i]-A229037_list[n-2*i])
            i += 1
            while j in b:
                b.remove(j)
                j += 1
        A229037_list.append(j) # Chai Wah Wu, Dec 21 2014

Formula

a(n) <= (n+1)/2. - Charles R Greathouse IV, Jan 21 2014

A020654 Lexicographically earliest infinite increasing sequence of nonnegative numbers containing no 5-term arithmetic progression.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 125, 126, 127
Offset: 1

Keywords

Comments

This is also the set of numbers with no "4" in their base-5 representation. In fact, for any prime p, the sequence consisting of numbers with no (p-1) in their base-p expansion is the same as the earliest sequence containing no p-term arithmetic progression. - Nathaniel Johnston, Jun 26-27 2011

Crossrefs

Cf. A023717.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 4)
            r += b * q
            b *= 5
        end
    r end; [a(n) for n in 0:66] |> println # Peter Luschny, Jan 03 2021
  • Maple
    seq(`if`(numboccur(4,convert(n,base,5))=0,n,NULL),n=0..127); # Nathaniel Johnston, Jun 27 2011
  • Mathematica
    Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 5 ], 4 ]==0)& ]
    Select[Range[0, 120], DigitCount[#, 5, 4] == 0 &] (* Amiram Eldar, Apr 14 2025 *)
  • PARI
    is(n)=while(n>4, if(n%5==4, return(0)); n\=5); 1 \\ Charles R Greathouse IV, Feb 12 2017
    
  • Python
    from sympy.ntheory.factor_ import digits
    print([n for n in range(201) if digits(n, 5)[1:].count(4)==0]) # Indranil Ghosh, May 23 2017
    
  • Python
    from gmpy2 import digits
    def A020654(n): return int(digits(n-1,4),5) # Chai Wah Wu, May 06 2025
    

Formula

Sum_{n>=2} 1/a(n) = 7.7794910022243020875287956248411192066951785182667316905881486574421016471305408306837031955619272391023... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Apr 14 2025

Extensions

Added "infinite" to definition. - N. J. A. Sloane, Sep 28 2019

A020657 Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85
Offset: 1

Keywords

Comments

Also the set of numbers with no "6" in their base-7 representation; see Gerver-Ramsey, also comments in A020654. - Nathaniel Johnston, Jun 27 2011
Up to the offset, identical to A037470. There are lexicographically earlier, but non-monotonic sequences which do not contain a 7-term AP, e.g., starting with 0,0,0,0,0,0,1,0,... - M. F. Hasler, Oct 05 2014

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Maple
    seq(`if`(numboccur(6,convert(n,base,7))=0,n,NULL),n=0..85); # Nathaniel Johnston, Jun 27 2011
  • Mathematica
    Select[Range[0, 100], FreeQ[IntegerDigits[#, 7], 6]&] (* Jean-François Alcover, Jan 27 2023 *)
  • PARI
    a(n)=vector(#n=digits(n-1, 6), i, 7^(#n-i))*n~ \\ M. F. Hasler, Oct 05 2014
    
  • Python
    from gmpy2 import digits
    def A020657(n): return int(digits(n-1,6),7) # Chai Wah Wu, May 06 2025

Extensions

Name edited by M. F. Hasler, Oct 10 2014. Further edited by N. J. A. Sloane, Jan 04 2016

A039966 a(0) = 1; thereafter a(3n+2) = 0, a(3n) = a(3n+1) = a(n).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Number of partitions of n into distinct powers of 3.
Trajectory of 1 under the morphism: 1 -> 110, 0 -> 000. Thus 1 -> 110 ->110110000 -> 110110000110110000000000000 -> ... - Philippe Deléham, Jul 09 2005
Also, an example of a d-perfect sequence.
This is a composite of two earlier sequences contributed at different times by N. J. A. Sloane and by Reinhard Zumkeller, Mar 05 2005. Christian G. Bower extended them and found that they agreed for at least 512 terms. The proof that they were identical was found by Ralf Stephan, Jun 13 2005, based on the fact that they were both 3-regular sequences.

Examples

			The triples of elements (a(3k), a(3k+1), a(3k+2)) are (1,1,0) if a(k) = 1 and (0,0,0) if a(k) = 0.  So since a(2) = 0, a(6) = a(7) = a(8) = 0, and since a(3) = 1, a(9) = a(10) = 1 and a(11) = 0. - _Michael B. Porter_, Jul 11 2016
		

Crossrefs

For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Characteristic function of A005836 (and apart from offset of A003278).

Programs

  • Haskell
    a039966 n = fromEnum (n < 2 || m < 2 && a039966 n' == 1)
       where (n',m) = divMod n 3
    -- Reinhard Zumkeller, Sep 29 2011
    
  • Maple
    a := proc(n) option remember; if n <= 1 then RETURN(1) end if; if n = 2 then RETURN(0) end if; if n mod 3 = 2 then RETURN(0) end if; if n mod 3 = 0 then RETURN(a(1/3*n)) end if; if n mod 3 = 1 then RETURN(a(1/3*n - 1/3)) end if end proc; # Ralf Stephan, Jun 13 2005
  • Mathematica
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) s = Rest[ Sort[ Plus @@@ Table[UnrankSubset[n, Table[3^i, {i, 0, 4}]], {n, 32}]]]; Table[ If[ Position[s, n] == {}, 0, 1], {n, 105}] (* Robert G. Wilson v, Jun 14 2005 *)
    CoefficientList[Series[Product[(1 + x^(3^k)), {k, 0, 5}], {x, 0, 111}], x] (* or *)
    Nest[ Flatten[ # /. {0 -> {0, 0, 0}, 1 -> {1, 1, 0}}] &, {1}, 5] (* Robert G. Wilson v, Mar 29 2006 *)
    Nest[ Join[#, #, 0 #] &, {1}, 5] (* Robert G. Wilson v, Jul 27 2014 *)
  • PARI
    {a(n)=local(A,m); if(n<0, 0, m=1; A=1+O(x); while(m<=n, m*=3; A=(1+x)*subst(A,x,x^3)); polcoeff(A,n))} /* Michael Somos, Jul 15 2005 */
    
  • PARI
    A039966(n)=vecmax(digits(n+!n,3))<2;
    apply(A039966, [0..99]) \\ M. F. Hasler, Feb 15 2023
    
  • Python
    def A039966(n):
        while n > 2:
            n,r = divmod(n,3)
            if r==2: return 0
        return int(n!=2) # M. F. Hasler, Feb 15 2023

Formula

a(0) = 1, a(1) = 0, a(n) = b(n-2), where b is the sequence defined by b(0) = 1, b(3n+2) = 0, b(3n) = b(3n+1) = b(n). - Ralf Stephan
a(n) = A005043(n-1) mod 3. - Christian G. Bower, Jun 12 2005
a(n) = A002426(n) mod 3. - John M. Campbell, Aug 24 2011
a(n) = A000275(n) mod 3. - John M. Campbell, Jul 08 2016
Properties: 0 <= a(n) <= 1, a(A074940(n)) = 0, a(A005836(n)) = 1; A104406(n) = Sum(a(k), 1 <= k <= n). - Reinhard Zumkeller, Mar 05 2005
Euler transform of sequence b(n) where b(3^k) = 1, b(2*3^k) = -1 and zero otherwise. - Michael Somos, Jul 15 2005
G.f. A(x) satisfies A(x) = (1+x)*A(x^3). - Michael Somos, Jul 15 2005
G.f.: Product{k>=0} 1+x^(3^k). Exponents give A005836.

Extensions

Entry revised Jun 30 2005
Offset corrected by John M. Campbell, Aug 24 2011

A003002 Size of the largest subset of the numbers [1...n] which does not contain a 3-term arithmetic progression.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22
Offset: 0

Keywords

Comments

"Sequences containing no 3-term arithmetic progressions" is another phrase people may be searching for.
a(n) = size of largest subset of [1..n] such that no term is the average of any two others. These are also called non-averaging sets, or 3-free sequences. - N. J. A. Sloane, Mar 01 2012
More terms of this sequence can be found directly from A065825, because A003002(n) (this sequence) = the integer k such that A065825(k) <= n < A065825(k+1). - Shreevatsa R, Oct 18 2009

Examples

			Examples from Dybizbanski (2012) (includes earlier examples found by other people):
n, a(n), example of an optimal subset:
0, 0, []
1, 1, [1]
2, 2, [1, 2]
4, 3, [1, 2, 4]
5, 4, [1, 2, 4, 5]
9, 5, [1, 2, 4, 8, 9]
11, 6, [1, 2, 4, 5, 10, 11]
13, 7, [1, 2, 4, 5, 10, 11, 13]
14, 8, [1, 2, 4, 5, 10, 11, 13, 14]
20, 9, [1, 2, 6, 7, 9, 14, 15, 18, 20]
24, 10, [1, 2, 5, 7, 11, 16, 18, 19, 23, 24]
26, 11, [1, 2, 5, 7, 11, 16, 18, 19, 23, 24, 26]
30, 12, [1, 3, 4, 8, 9, 11, 20, 22, 23, 27, 28, 30]
32, 13, [1, 2, 4, 8, 9, 11, 19, 22, 23, 26, 28, 31, 32]
36, 14, [1, 2, 4, 8, 9, 13, 21, 23, 26, 27, 30, 32, 35, 36]
40, 15, [1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40]
41, 16, [1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41]
51, 17, [1, 2, 4, 5, 10, 13, 14, 17, 31, 35, 37, 38, 40, 46, 47, 50, 51]
54, 18, [1, 2, 5, 6, 12, 14, 15, 17, 21, 31, 38, 39, 42, 43, 49, 51, 52, 54]
58, 19, [1, 2, 5, 6, 12, 14, 15, 17, 21, 31, 38, 39, 42, 43, 49, 51, 52, 54, 58]
63, 20, [1, 2, 5, 7, 11, 16, 18, 19, 24, 26, 38, 39, 42, 44, 48, 53, 55, 56, 61, 63]
71, 21, [1, 2, 5, 7, 10, 17, 20, 22, 26, 31, 41, 46, 48, 49, 53, 54, 63, 64, 68, 69, 71]
74, 22, [1, 2, 7, 9, 10, 14, 20, 22, 23, 25, 29, 46, 50, 52, 53, 55, 61, 65, 66, 68, 73, 74]
82, 23, [1, 2, 4, 8, 9, 11, 19, 22, 23, 26, 28, 31, 49, 57, 59, 62, 63, 66, 68, 71, 78, 81, 82]
		

References

  • H. L. Abbott, On a conjecture of Erdos and Straus on non-averaging sets of integers, Proc. 5th British Combinatorial Conference, 1975, pp. 1-4.
  • Bloom, T. F. (2014). Quantitative results in arithmetic combinatorics (Doctoral dissertation, University of Bristol).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. G. Straus, Nonaveraging sets. In Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), pp. 215-222. Amer. Math. Soc., Providence, R.I., 1971. MR0316255 (47 #4803)
  • T. Tao and V. Vu, Additive Combinatorics, Problem 10.1.3.

Crossrefs

The classical lower bound is A104406; A229037 gives a "greedy" lower bound. - N. J. A. Sloane, Apr 29 2023
Cf. A358062 (diagonal domination number for the n X n queen graph).
A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

Programs

  • Mathematica
    (* Program not suitable to compute a large number of terms *)
    a[n_] := a[n] = For[r = Range[n]; k = n, k >= 1, k--, If[AnyTrue[Subsets[r, {k}], FreeQ[#, {_, a_, _, b_, _, c_, _} /; b - a == c - b] &], Return[k]]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Jan 21 2018 *)
  • PARI
    ap3(v)=for(i=1,#v-2, for(j=i+2,#v, my(t=v[i]+v[j]); if(t%2==0 && setsearch(v,t/2), return(1)))); 0
    a(N)=forstep(n=N,2,-1, forvec(v=vector(n,i,[1,N]),if(!ap3(v), return(n)),2)); N \\ Charles R Greathouse IV, Apr 22 2022

Formula

Sanders proves that a(n) << n*(log log n)^5/log n. - Charles R Greathouse IV, Jan 22 2016
Bloom & Sisask prove that a(n) << n/(log n)^c for some c > 1. - Charles R Greathouse IV, Oct 11 2022

Extensions

Extended from 53 terms to 80 terms, using a simple brute-force program with some pruning, by Shreevatsa R, Oct 18 2009
See Dybizbanski (2012) for first 120 terms. - N. J. A. Sloane, Dec 17 2013
Edited by N. J. A. Sloane, Apr 12 2016
a(0)=0 prepended by Alois P. Heinz, May 14 2020
Showing 1-10 of 73 results. Next