cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A191383 Integers n such that each of n, 2n and 3n is a sum of 2 distinct positive cubes.

Original entry on oeis.org

2457, 15561, 19656, 25389, 39816, 66339, 124488, 157248, 203112, 248976, 307125, 318528, 420147, 530712, 685503, 842751, 995904, 1075032, 1257984, 1624896, 1791153, 1945125, 1991808, 2457000, 2548224, 3173625, 3270267
Offset: 1

Views

Author

Zak Seidov, Jun 01 2011

Keywords

Examples

			2457 is in the sequence because 2457 = 9^3+12^3, 2*2457 = 4914 = 1^3+17^3, 3*2457 = 7371 = 8^3+19^3 have at least one representation as a sum of two distinct positive cubes.
		

Crossrefs

Programs

  • Maple
    isA000578 := proc(n) option remember; local f; for f in ifactors(n)[2] do if op(2,f) mod 3 <> 0 then return false; end if; end do: true ; end proc:
    isA024670 := proc(n) option remember ; local k,kc,k3 ; for k from 1 do k3 := k^3 ; kc := n-k^3 ; if kc <= k3 then return false; elif isA000578(kc) then return true; end if; end do: end proc:
    isA191383 := proc(n) isA024670(n) and isA024670(2*n) and isA024670(3*n) ; end proc:
    for n from 1 do if isA191383(n) then printf("%d,\n",n); end if; end do: # R. J. Mathar, Jun 03 2011

Formula

{n: n in A024670 and 2n in A024670 and 3n in A024670}.

A273753 Taxi-cab numbers (A001235) that are the average of two positive cubes in more than one way.

Original entry on oeis.org

6742008, 53936064, 182034216, 431488512, 842751000, 1456273728, 1581292125, 2312508744, 3451908096, 4914923832, 6742008000, 8973612648, 11395366632, 11650189824, 12650337000, 14812191576, 18500069952, 22754277000, 27615264768, 33123485304, 39319390656
Offset: 1

Views

Author

Altug Alkan, May 29 2016

Keywords

Comments

Motivation for this sequence is that question: What is the least odd term of this sequence?
1581292125 = 3^6*5^3*7*37*67 is the least odd number that is the term of this sequence.

Examples

			6742008 is a term because 6742008 = 46^3 + 188^3 = 126^3 + 168^3 = (14^3 + 238^3)/2 = (105^3 + 231^3)/2.
53936064 is a term because 53936064 = 2^3*6742008.
1581292125 is a term because 1581292125 = 50^3 + 1165^3 = 540^3 + 1125^3 = (435^3 + 1455^3)/2 = (909^3 + 1341^3)/2.
		

Crossrefs

Programs

  • PARI
    T = thueinit(x^3+1, 1);
    isA001235(n) = my(v=thue(T, n)); sum(i=1, #v, v[i][1]>=0 && v[i][2]>=v[i][1])>1;
    isok(n) = isA001235(n) && isA001235(2*n);

Extensions

a(5)-a(21) from Giovanni Resta, Jun 01 2016

A282948 Numbers n such that (u^4 + v^4)/2 = x^4 + y^4 = n has a solution in positive integers u,v,x,y.

Original entry on oeis.org

162401, 2598416, 13154481, 41574656, 101500625, 210471696, 389924801, 665194496, 1065512961, 1624010000, 2377713041, 3367547136, 4638334961, 6238796816, 8221550625, 10643111936, 13563893921, 17048207376, 21164260721, 25984160000, 31583908881, 38043408656
Offset: 1

Views

Author

Altug Alkan and Thomas Ordowski, Feb 25 2017

Keywords

Comments

All terms are composite.
If n is in this sequence, then n*k^4 with k > 0 is in this sequence.
Numbers n such that n and 2*n are both in A003336. - Michel Marcus, Feb 25 2017
The first term which is not a multiple of a(1) is a(84) = 8051889328801. - Giovanni Resta, Feb 25 2017
Based on Giovanni Resta's b-file, the squarefree terms are 162401, 8051889328801, 9305528350081, 16778006844241, .... - Altug Alkan, Feb 26 2017
Izadi & Nabardi construct a collection of elliptic curves of rank >= 5 using (essentially) terms of this sequence. - Charles R Greathouse IV, Jul 13 2024

Examples

			(19^4 + 21^4)/2 = 7^4 + 20^4 = 162401.
		

Crossrefs

Programs

  • PARI
    isA003336(n) = for(k=1, sqrtnint(n\2, 4), ispower(n-k^4, 4) && return(1));
    is(n) = isA003336(n) && isA003336(2*n);
    
  • PARI
    T=thueinit('x^4+1, 1);
    has(n)=#thue(T, n)>0 && !issquare(n)
    list(lim)=my(v=List(),x4,t); for(x=1,sqrtnint(lim\=1,4), x4=x^4; for(y=1,min(sqrtnint(lim-x4,4),x), t=x4+y^4; if(has(2*t), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 26 2017

Extensions

a(10)-a(22) from Giovanni Resta, Feb 25 2017

A189821 Smallest integer m such that m*j is a sum of two distinct positive cubes for j=1..n.

Original entry on oeis.org

9, 728, 2457, 124488, 124488, 124488
Offset: 1

Views

Author

Zak Seidov, Jun 02 2011

Keywords

Comments

Identifies the first arithmetic progression with at least n terms in A024670.
Terms beyond a(6) are >= 1400000 (but may not exist).

Examples

			a(6)=m=124488: 1*m=124488=34^3+44^3, 2*m=248976=22^3+62^3, 3*m=373464=6^3+72^3=54^3+60^3, 4*m=497952=17^3+79^3, 5*m=622440=37^5+83^3, 6*m=746928=71^3+73^3.
		

Crossrefs

Showing 1-4 of 4 results.