A191408 Duplicate of A006641.
1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 4, 2, 1, 5, 2, 2, 4, 4, 3, 1, 4, 7, 5, 3, 4, 6, 2, 2, 8, 5, 6, 3, 8, 2, 6, 10, 4, 2, 5, 5, 4, 4, 3, 10, 2, 7, 6, 4, 10, 1, 8, 11, 4, 5, 8, 4, 2, 13, 4, 9, 4, 3, 6, 14, 4, 7, 5, 4, 12, 2, 2, 15, 6, 6, 8, 7, 12, 4, 8, 13, 8, 2, 11, 8, 4, 3, 14, 4, 4, 8, 10, 8
Offset: 1
Keywords
Crossrefs
Cf. A191410.
Programs
-
Mathematica
FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric W. Weisstein *); NumberFieldClassNumber@ Sqrt@ # & /@ Select[-Range@ 300, FundamentalDiscriminantQ]
-
PARI
for(n=1, 300, if(isfundamental(-n), print1(quadclassunit(-n).no, ", "))) \\ Andrew Howroyd, Jul 23 2018
Formula
Class number of A003657(n).
Extensions
Terms corrected by Andrew Howroyd and Robert G. Wilson v, Jul 24 2018
Comments