A191476 Values of j in the numbers 2^i*3^j, i >= 1, j >= 1, arranged in increasing order (A033845).
1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 1, 8, 3, 5, 7, 2, 4, 6, 1, 8, 3, 5, 7, 2, 9, 4, 6, 1, 8, 3, 5, 7, 2, 9, 4, 6, 1, 8, 3, 10, 5, 7, 2, 9, 4, 6, 1, 8, 3
Offset: 1
Keywords
Examples
a(10) = 3 because A033845(10) = 108 = 2^2*3^3. a(100) = 7 because A033845(100) = 59872 = 2^8*3^7. a(1000) = 1 because A033845(1000) = 216172782113783808 = 2^56*3^1.
Links
Crossrefs
Programs
-
Mathematica
mx = 1000000; t = Select[Sort[Flatten[Table[2^i 3^j, {i, Log[2, mx]}, {j, Log[3, mx]}]]], # <= mx &]; Table[FactorInteger[i][[2, 2]], {i, t}] (* T. D. Noe, Aug 31 2012 *)
-
Python
from sympy import integer_log def A191476(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) return 1+integer_log((m:=bisection(f,n,n))>>(~m&m-1).bit_length(),3)[0] # Chai Wah Wu, Sep 15 2024
Extensions
Edited by N. J. A. Sloane, May 26 2024
Comments