cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191522 Number of valleys in all left factors of Dyck paths of length n. A valley is a (1,-1)-step followed by a (1,1)-step.

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 20, 45, 105, 224, 504, 1050, 2310, 4752, 10296, 21021, 45045, 91520, 194480, 393822, 831402, 1679600, 3527160, 7113106, 14872858, 29953728, 62403600, 125550100, 260757900, 524190240, 1085822640, 2181340125, 4508102925, 9051563520, 18668849760
Offset: 0

Views

Author

Emeric Deutsch, Jun 05 2011

Keywords

Comments

a(n+2) is also the sum of the maximum elements of each subset of [n]={1,...,n} with size floor((n+1)/2). For example for n=3 there are three subsets {1,2},{1,3},{2,3} and the sum of maximum values is 2+3+3=8. - Fabio VisonĂ , Aug 13 2023

Examples

			a(4)=3 because the total number of valleys in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU is 1+1+0+1+0+0=3; here U=(1,1), D=(1,-1).
		

Crossrefs

Cf. A191521.

Programs

  • Maple
    q := sqrt(1-4*z^2): g := (2*((1-z-3*z^2+z^3)*q-1+z+5*z^2-3*z^3-4*z^4))/(z*q*(1-2*z-q)^2): gser := series(g, z = 0, 36): seq(coeff(gser, z, n), n = 0 .. 33);
  • Mathematica
    CoefficientList[Series[(2*((1-x-3*x^2+x^3)*Sqrt[1-4*x^2]-1+x+5*x^2-3*x^3-4*x^4))/(x*Sqrt[1-4*x^2]*(1-2*x-Sqrt[1-4*x^2])^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec((2*((1-x-3*x^2+x^3)*sqrt(1-4*x^2)-1+x+5*x^2-3*x^3-4*x^4))/(x*sqrt(1-4*x^2)*(1-2*x-sqrt(1-4*x^2))^2))) \\ G. C. Greubel, Mar 26 2017

Formula

a(n) = Sum_{k>=0} k*A191521(n,k).
G.f.: 2*((1-z-3*z^2+z^3)*q-1+z+5*z^2-3*z^3-4*z^4)/(z*q*(1-2*z-q)^2), where q = sqrt(1-4*z^2).
a(n) ~ 2^(n-3/2)*sqrt(n)/sqrt(Pi). - Vaclav Kotesovec, Mar 21 2014
D-finite with recurrence -2*(n+1)*(n-3)*a(n) +(-5*n^2+29*n-6)*a(n-1) +2*(4*n+5)*(n-2)*a(n-2) +20*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
a(n) = floor((n-1)/2)*binomial(n-1,floor((n-1)/2)+1), n > 0. - Fabio VisonĂ , Aug 13 2023