cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A298645 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having degree of asymmetry k (n >= 1, 0 <= k <= n-1).

Original entry on oeis.org

1, 2, 0, 3, 0, 2, 6, 0, 6, 2, 10, 0, 16, 8, 8, 20, 0, 40, 24, 32, 16, 35, 0, 90, 60, 108, 84, 52, 70, 0, 210, 150, 310, 294, 262, 134, 126, 0, 448, 336, 816, 880, 1008, 816, 432, 252, 0, 1008, 784, 2100, 2460, 3208, 3192, 2544, 1248, 462, 0, 2100, 1680, 5040, 6300, 9300, 10680, 10760, 8360, 4104
Offset: 1

Views

Author

Emeric Deutsch, Feb 20 2018

Keywords

Comments

The degree of asymmetry of a Dyck path is defined in the following manner: we label the steps of a Dyck path of length 2n, from left to right, as 1, 2, ..., n-1, n, n, n-1, ..., 2, 1. The degree of asymmetry is defined as the number of pairs of identically labeled steps that are not at the same level. Example: the Dyck path uduudd has degree of asymmetry 2. Indeed, the labels are 1,2,3,3,2,1 and the steps labeled 2 are at different levels and those labeled 3 are also at different levels.
T(n,0) = A001405(n) = binomial(n, floor(n/2)) = number of symmetric Dyck paths of semilength n.
Sum of entries in row n = A000108(n) (the Catalan numbers).
Apparently, T(n,2) = 2*A191522(n).
Sum_{k=0..n-1} k*T(n,k) = A298646(n).
The Maple program needs to be improved. The initial m defines the number of rows. For m = 8 Maple 16 needs 10 secs; for m = 9 one needs 40 secs. For m>=10 one needs exponentially increasing hours!
In the Maple program: EL gives the levels of the elevated Dyck path; mg gives the levels of the merge of two Dyck paths; ME gives the levels of an elevated Dyck path merged with another Dyck path; Y[n] gives the levels of all the Catalan(n) Dyck paths of semilength n; r gives the reverse of a sequence; b gives the degree of asymmetry of a Dyck path; P(n) is the generating polynomial of the Dyck paths of semilength n with respect to the degree of asymmetry.

Examples

			Triangle begins:
    1;
    2, 0;
    3, 0,    2;
    6, 0,    6,   2;
   10, 0,   16,   8,    8;
   20, 0,   40,  24,   32,   16;
   35, 0,   90,  60,  108,   84,   52;
   70, 0,  210, 150,  310,  294,  262,  134;
  126, 0,  448, 336,  816,  880, 1008,  816,  432;
  252, 0, 1008, 784, 2100, 2460, 3208, 3192, 2544, 1248;
  ...
Row n = 3 is [3,0,2]. Indeed, showing the step levels, the Dyck paths 111111, 122221, 123321 are symmetric and each of the Dyck paths 111221, 122111 has degree of asymmetry 2.
		

Crossrefs

Programs

  • Maple
    m := 8: EL := proc (s) options operator, arrow: [1, seq(1+s[j], j = 1 .. nops(s)), 1] end proc: mg := proc (u, v) options operator, arrow: [seq(u[i], i = 1 .. nops(u)), seq(v[j], j = 1 .. nops(v))] end proc: ME := proc (u, v) options operator, arrow: mg(EL(u), v) end proc: Y[0] := {[]}: for n to m do Y[n] := {}: for p from 0 to n-1 do for q to nops(Y[p]) do for r to nops(Y[n-1-p]) do Y[n] := `union`(Y[n], {ME(Y[p][q], Y[n-1-p][r])}) end do end do end do end do: r := proc (s) options operator, arrow: [seq(s[nops(s)-j+1], j = 1 .. nops(s))] end proc: b := proc (s) local i, j: j := 0: for i to nops(s) do if 0 < abs((s-r(s))[i]) then j := j+1 else  end if end do: (1/2)*j end proc: P := proc (n) options operator, arrow: sort(add(t^b(Y[n][q]), q = 1 .. binomial(2*n, n)/(n+1))) end proc: T := proc (n, k) options operator, arrow: coeff(P(n), t, k) end proc: for n to m do seq(T(n, k), k = 0 .. n-1) end do;
    # second Maple program:
    b:= proc(x, y, v) option remember; expand(
          `if`(min(y, v, x-max(y, v))<0, 0, `if`(x=0, 1, (l-> add(add(
          `if`(y=v+(j-i)/2, 1, z)*b(x-1, y+i, v+j), i=l), j=l))([-1, 1]))))
        end:
    g:= proc(n) option remember; add(b(n, j$2), j=0..n) end:
    T:= (n, k)-> coeff(g(n), z, k):
    seq(seq(T(n, k), k=0..n-1), n=1..12);  # Alois P. Heinz, Feb 20 2018
  • Mathematica
    b[x_, y_, v_] := b[x, y, v] = Expand[If[Min[y, v, x - Max[y, v]] < 0, 0, If[x == 0, 1, Function[l, Sum[Sum[If[y == v + (j - i)/2, 1, z]*b[x - 1, y + i, v + j], {i, l}], {j, l}]][{-1, 1}]]]];
    g[n_] := g[n] = Sum[b[n, j, j], {j, 0, n}];
    T[n_, k_] := Coefficient[g[n], z, k];
    Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)

A191521 Triangle read by rows: T(n,k) is the number of left factors of Dyck paths of length n that have k valleys (i.e., a (1,-1)-step followed by a (1,1)-step).

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 3, 6, 1, 4, 12, 4, 4, 18, 12, 1, 5, 30, 30, 5, 5, 40, 60, 20, 1, 6, 60, 120, 60, 6, 6, 75, 200, 150, 30, 1, 7, 105, 350, 350, 105, 7, 7, 126, 525, 700, 315, 42, 1, 8, 168, 840, 1400, 840, 168, 8, 8, 196, 1176, 2450, 1960, 588, 56, 1, 9, 252, 1764, 4410, 4410, 1764, 252, 9
Offset: 0

Views

Author

Emeric Deutsch, Jun 05 2011

Keywords

Comments

Row n>=1 contains ceiling(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
Sum_{k>=0} k*T(n,k) = A191522(n).

Examples

			T(4,1)=3 because we have U(DU)D, U(DU)U, and UU(DU), where U=(1,1) and D=(1,-1) (the valleys are shown between parentheses).
Triangle starts:
  1;
  1;
  2;
  2,  1;
  3,  3;
  3,  6,  1;
  4, 12,  4;
  4, 18, 12,  1;
  ...
		

Crossrefs

Programs

  • Maple
    Q := sqrt(((1-z)^2-t*z^2)*((1+z)^2-t*z^2)): G := (1+t*z^2-z^2-Q)/(t*z*(t*z^2-1+2*z-z^2+Q)): Gser := simplify(series(G, z = 0, 19)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: 1; for n to 16 do seq(coeff(P[n], t, k), k = 0 .. ceil((1/2)*n)-1) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; expand(`if`(x=0, 1,
         `if`(y>0, b(x-1, y-1, z), 0)+b(x-1, y+1, 1)*t))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..30);  # Alois P. Heinz, Mar 29 2017
  • Mathematica
    T[n_, m_] := If [n == 0 && m == 0, 1, If[n == 0, 0, If[OddQ[n-1], (2* Binomial[n/2, m]*Binomial[n/2, m+1]*(n/2 + 1))/n, Binomial[(n+1)/2, m+1]*Sum[(-1)^(k-1)*Binomial[(n+1)/2, m-k+1], {k, 1, (n+1)/2}]]]];
    Table[T[n, m], {n, 0, 16}, {m, 0, If[n <= 2, 0, Quotient[n-1, 2]]}] // Flatten (* Jean-François Alcover, Feb 16 2021, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if n=0 and m=0 then 1 else if n=0 then 0 else if oddp(n-1) then (2*binomial(n/2,m)*binomial(n/2,m+1)*(n/2+1))/n else binomial((n+1)/2,m+1)*sum((-1)^(k-1)*binomial((n+1)/2,m-k+1),k,1,(n+1)/2);
    /* Vladimir Kruchinin, Jul 24 2019 */

Formula

G.f.: G(t,z) = (1+t*z^2-z^2-Q)/(t*z*(t*z^2-1+2*z-z^2+Q)), where Q = sqrt(((1-z)^2-t*z^2)*((1+z)^2-t*z^2)).
T(n,k) = 2*C(n/2,k)*C(n/2,k+1)*(n/2+1)/n, for even n, C((n+1)/2,k+1)*Sum_{j=1..(n+1)/2} (-1)^(j-1)*C((n+1)/2,k-j+1), for odd n, T(0,0)=1. - Vladimir Kruchinin, Jul 24 2019

A341445 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having degree of symmetry k (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 0, 2, 2, 0, 3, 2, 6, 0, 6, 8, 8, 16, 0, 10, 16, 32, 24, 40, 0, 20, 52, 84, 108, 60, 90, 0, 35, 134, 262, 294, 310, 150, 210, 0, 70, 432, 816, 1008, 880, 816, 336, 448, 0, 126, 1248, 2544, 3192, 3208, 2460, 2100, 784, 1008, 0, 252
Offset: 1

Views

Author

Sergi Elizalde, Feb 12 2021

Keywords

Comments

The degree of symmetry of a Dyck path is defined as the number of steps in the first half that are mirror images of steps in the second half, with respect to the reflection along the vertical line through the midpoint of the path.

Examples

			For n=4 there are 6 Dyck paths with degree of symmetry equal to 2: uuuddudd, uuduuddd, uududdud, uuddudud, uduududd, ududuudd.
Triangle begins:
     1;
     0,    2;
     2,    0,    3;
     2,    6,    0,    6;
     8,    8,   16,    0,   10;
    16,   32,   24,   40,    0,   20;
    52,   84,  108,   60,   90,    0,  35;
   134,  262,  294,  310,  150,  210,   0,   70;
   432,  816, 1008,  880,  816,  336, 448,    0, 126;
  1248, 2544, 3192, 3208, 2460, 2100, 784, 1008,   0, 252;
  ...
		

Crossrefs

Equivalent to A298645 with rows reversed.
Row sums give A000108.
Main diagonal gives A001405.
Column k=1 gives A298647 (for n>2).
Second subdiagonal gives 2*A191522.

Programs

  • Maple
    b:= proc(x, y, v) option remember; expand(
          `if`(min(y, v, x-max(y, v))<0, 0, `if`(x=0, 1, (l-> add(add(
          `if`(y=v+(j-i)/2, z, 1)*b(x-1, y+i, v+j), i=l), j=l))([-1, 1]))))
        end:
    g:= proc(n) option remember; add(b(n, j$2), j=0..n) end:
    T:= (n, k)-> coeff(g(n), z, k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Feb 12 2021
  • Mathematica
    b[x_, y_, v_] := b[x, y, v] = Expand[If[Min[y, v, x - Max[y, v]] < 0, 0, If[x == 0, 1, Function[l, Sum[Sum[If[y == v + (j - i)/2, z, 1]*b[x - 1, y + i, v + j], {i, l}], {j, l}]][{-1, 1}]]]];
    g[n_] := g[n] = Sum[b[n, j, j], {j, 0, n}];
    T[n_, k_] := Coefficient[g[n], z, k];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Feb 13 2021, after Alois P. Heinz *)
Showing 1-3 of 3 results.