cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A124428 Triangle, read by rows: T(n,k) = binomial(floor(n/2),k)*binomial(floor((n+1)/2),k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 6, 3, 1, 9, 9, 1, 1, 12, 18, 4, 1, 16, 36, 16, 1, 1, 20, 60, 40, 5, 1, 25, 100, 100, 25, 1, 1, 30, 150, 200, 75, 6, 1, 36, 225, 400, 225, 36, 1, 1, 42, 315, 700, 525, 126, 7, 1, 49, 441, 1225, 1225, 441, 49, 1, 1, 56, 588, 1960, 2450, 1176, 196, 8
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2006

Keywords

Comments

Row sums form A001405, the central binomial coefficients: C(n,floor(n/2)). The eigenvector of this triangle is A124430.
T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) having k peaks. Example: T(5,2)=3 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HUDUD, UDHUD, and UDUDH. - Emeric Deutsch, Jun 01 2011
From Emeric Deutsch, Jan 18 2013: (Start)
T(n,k) is the number of Dyck prefixes of length n having k peaks. Example: T(5,2)=3 because we have (UD)(UD)U, (UD)U(UD), and U(UD)(UD); the peaks are shown between parentheses.
T(n,k) is the number of Dyck prefixes of length n having k ascents and descents of length >= 2. Example: T(5,2)=3 because we have (UU)(DD)U, (UU)D(UU), and (UUU)(DD); the ascents and descents of length >= 2 are shown between parentheses. (End)
T(n,k) is the number of noncrossing partitions of [n] having n-k blocks, such that the nontrivial blocks are of type {a,b}, with a < = n/2 and b > n/2. Such partitions have k nontrivial blocks, uniquely determined by the choice of k first elements among floor(n/2) elements, and the choice of k second elements among floor((n+1)/2) elements. Indeed, by planarity, any two blocs {a,b} and {c,d} satisfy a < c iff b > d. - Francesca Aicardi Nov 03 2022

Examples

			Triangle begins:
  1;
  1;
  1,   1;
  1,   2;
  1,   4,   1;
  1,   6,   3;
  1,   9,   9,   1;
  1,  12,  18,   4;
  1,  16,  36,  16,   1;
  1,  20,  60,  40,   5;
  1,  25, 100, 100,  25,   1;
  1,  30, 150, 200,  75,   6;
  1,  36, 225, 400, 225,  36,   1; ...
		

Crossrefs

Cf. A001405 (row sums), A056953, A026003, A124429 (antidiagonal sums), A124430 (eigenvector), A191521.
Columns = A002378, A006011, A006542, etc.

Programs

  • Magma
    [[Binomial(Floor(n/2), k)*Binomial(Floor((n+1)/2),k): k in [0..Floor(n/2)]]: n in [0..15]]; // G. C. Greubel, Feb 24 2019
    
  • Mathematica
    Table[Binomial[Floor[n/2], k]*Binomial[Floor[(n+1)/2], k], {n, 0, 15}, {k, 0, Floor[n/2]}]//Flatten (* G. C. Greubel, Feb 24 2019 *)
  • PARI
    T(n,k)=binomial(n\2,k)*binomial((n+1)\2,k)
    
  • Sage
    [[binomial(floor(n/2),k)*binomial(floor((n+1)/2),k) for k in (0..floor(n/2))] for n in (0..15)] # G. C. Greubel, Feb 24 2019

Formula

A056953(n) = Sum_{k=0..floor(n/2)} k!*T(n,k).
A026003(n) = Sum_{k=0..floor(n/2)} 2^k*T(n,k).

A191522 Number of valleys in all left factors of Dyck paths of length n. A valley is a (1,-1)-step followed by a (1,1)-step.

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 20, 45, 105, 224, 504, 1050, 2310, 4752, 10296, 21021, 45045, 91520, 194480, 393822, 831402, 1679600, 3527160, 7113106, 14872858, 29953728, 62403600, 125550100, 260757900, 524190240, 1085822640, 2181340125, 4508102925, 9051563520, 18668849760
Offset: 0

Views

Author

Emeric Deutsch, Jun 05 2011

Keywords

Comments

a(n+2) is also the sum of the maximum elements of each subset of [n]={1,...,n} with size floor((n+1)/2). For example for n=3 there are three subsets {1,2},{1,3},{2,3} and the sum of maximum values is 2+3+3=8. - Fabio VisonĂ , Aug 13 2023

Examples

			a(4)=3 because the total number of valleys in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU is 1+1+0+1+0+0=3; here U=(1,1), D=(1,-1).
		

Crossrefs

Cf. A191521.

Programs

  • Maple
    q := sqrt(1-4*z^2): g := (2*((1-z-3*z^2+z^3)*q-1+z+5*z^2-3*z^3-4*z^4))/(z*q*(1-2*z-q)^2): gser := series(g, z = 0, 36): seq(coeff(gser, z, n), n = 0 .. 33);
  • Mathematica
    CoefficientList[Series[(2*((1-x-3*x^2+x^3)*Sqrt[1-4*x^2]-1+x+5*x^2-3*x^3-4*x^4))/(x*Sqrt[1-4*x^2]*(1-2*x-Sqrt[1-4*x^2])^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec((2*((1-x-3*x^2+x^3)*sqrt(1-4*x^2)-1+x+5*x^2-3*x^3-4*x^4))/(x*sqrt(1-4*x^2)*(1-2*x-sqrt(1-4*x^2))^2))) \\ G. C. Greubel, Mar 26 2017

Formula

a(n) = Sum_{k>=0} k*A191521(n,k).
G.f.: 2*((1-z-3*z^2+z^3)*q-1+z+5*z^2-3*z^3-4*z^4)/(z*q*(1-2*z-q)^2), where q = sqrt(1-4*z^2).
a(n) ~ 2^(n-3/2)*sqrt(n)/sqrt(Pi). - Vaclav Kotesovec, Mar 21 2014
D-finite with recurrence -2*(n+1)*(n-3)*a(n) +(-5*n^2+29*n-6)*a(n-1) +2*(4*n+5)*(n-2)*a(n-2) +20*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
a(n) = floor((n-1)/2)*binomial(n-1,floor((n-1)/2)+1), n > 0. - Fabio VisonĂ , Aug 13 2023
Showing 1-2 of 2 results.