A124429
Antidiagonal sums of triangle A124428.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 8, 13, 22, 36, 61, 102, 172, 292, 493, 841, 1429, 2439, 4169, 7124, 12216, 20930, 35940, 61749, 106155, 182749, 314638, 542338, 935195, 1613593, 2786037, 4811920, 8316435, 14378247, 24870062, 43036264, 74496224, 129008514
Offset: 0
-
[(&+[Binomial(Floor((n-k)/2), k)*Binomial(Floor((n-k+1)/2), k): k in [0..Floor(n/3)]]): n in [0..40]]; // G. C. Greubel, Feb 24 2019
-
Table[Sum[Binomial[Floor[(n-k)/2], k]*Binomial[Floor[(n-k+1)/2], k], {k, 0, Floor[n/3]}], {n, 0, 40}] (* G. C. Greubel, Feb 24 2019 *)
-
a(n)=sum(k=0,n\3,binomial((n-k)\2,k)*binomial((n-k+1)\2,k))
-
[sum(binomial(floor((n-k)/2),k)*binomial(floor((n-k+1)/2),k) for k in (0..floor(n/3))) for n in (0..40)] # G. C. Greubel, Feb 24 2019
Original entry on oeis.org
1, 1, 2, 3, 7, 13, 31, 61, 144, 296, 714, 1534, 3761, 8303, 20495, 46115, 114461, 261445, 651114, 1503207, 3749017, 8726147, 21788311, 51072555, 127698665, 301244477, 754496298, 1790598079, 4494019431, 10726676701, 26983034009
Offset: 0
a(5) = 1*a(0) + 6*a(1) + 3*a(2) = 1*1 + 6*1 + 3*2 = 13;
a(6) = 1*a(0) + 9*a(1) + 9*a(2) + 1*a(3) = 1*1 + 9*1 + 9*2 + 1*3 = 31.
Triangle A124428(n,k) = C([n/2],k)*C([(n+1)/2],k) begins:
1;
1;
1, 1;
1, 2;
1, 4, 1;
1, 6, 3;
1, 9, 9, 1;
1, 12, 18, 4;
1, 16, 36, 16, 1; ...
-
a[n_]:= a[n] = If[n==0, 1, Sum[Binomial[Floor[n/2], k]*Binomial[Floor[(n + 1)/2], k]*a[k], {k,0,Floor[n/2]}]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Feb 24 2019 *)
-
{a(n)=if(n==0,1,sum(k=0,n\2,a(k)*binomial(n\2,k)*binomial((n+1)\2,k)))}
A006542
a(n) = binomial(n,3)*binomial(n-1,3)/4.
Original entry on oeis.org
1, 10, 50, 175, 490, 1176, 2520, 4950, 9075, 15730, 26026, 41405, 63700, 95200, 138720, 197676, 276165, 379050, 512050, 681835, 896126, 1163800, 1495000, 1901250, 2395575, 2992626, 3708810, 4562425, 5573800, 6765440, 8162176, 9791320, 11682825, 13869450
Offset: 4
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 166, no. 1).
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 4..200
- Isaac Ahern and Sam Cook, Affine Symmetry Tensors in Minkowski Space, American Journal of Undergraduate Research, Volume 13, Issue 3, August 2016.
- P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Apr 1977
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31.
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy]
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 6, 25.
- Robert Munafo, C(n,3)C(n-1,3)/4
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences
A000012,
A000217,
A002415,
A006542,
A006857,
A108679,
A134288,
A134289,
A134290,
A134291,
A140925,
A140935,
A169937.
Cf.
A000332,
A000579,
A001263,
A002378,
A004068,
A005585,
A005891,
A006322,
A006414,
A047819,
A107891,
A114242.
Fourth column of the table of Narayana numbers
A001263.
Apart from a scale factor, a column of
A124428.
-
List([4..40], n-> n*(n-1)^2*(n-2)^2*(n-3)/144); # G. C. Greubel, Feb 24 2019
-
[ n*((n-1)*(n-2))^2*(n-3)/144 : n in [4..40] ]; // Wesley Ivan Hurt, Jun 17 2014
-
A006542:=-(1+3*z+z**2)/(z-1)**7; # conjectured by Simon Plouffe in his 1992 dissertation
A006542:=n->n*((n-1)*(n-2))^2*(n-3)/144; seq(A006542(n), n=4..40); # Wesley Ivan Hurt, Jun 17 2014
-
Table[Binomial[n, 3]*Binomial[n-1, 3]/4, {n, 4, 40}]
-
a(n)=n*((n-1)*(n-2))^2*(n-3)/144
-
[n*(n-1)^2*(n-2)^2*(n-3)/144 for n in (4..40)] # G. C. Greubel, Feb 24 2019
Zabroki and Lajos formulas offset corrected by
Gary Detlefs, Dec 05 2011
A006011
a(n) = n^2*(n^2 - 1)/4.
Original entry on oeis.org
0, 0, 3, 18, 60, 150, 315, 588, 1008, 1620, 2475, 3630, 5148, 7098, 9555, 12600, 16320, 20808, 26163, 32490, 39900, 48510, 58443, 69828, 82800, 97500, 114075, 132678, 153468, 176610, 202275, 230640, 261888, 296208, 333795, 374850, 419580, 468198
Offset: 0
From _Bruno Berselli_, Aug 29 2014: (Start)
After the zeros, the sequence is provided by the row sums of the triangle:
3;
4, 14;
5, 16, 39;
6, 18, 42, 84;
7, 20, 45, 88, 155;
8, 22, 48, 92, 160, 258;
9, 24, 51, 96, 165, 264, 399;
10, 26, 54, 100, 170, 270, 406, 584;
11, 28, 57, 104, 175, 276, 413, 592, 819;
12, 30, 60, 108, 180, 282, 420, 600, 828, 1110; etc.,
where T(r,c) = c*(c^2+r+1), with r = row index, c = column index, r >= c > 0. (End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Miguel Azaola and Francisco Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., Vol. 27 (2002), pp. 29-48 (see Prop. 4.2(a)).
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy)
- Eric Weisstein's World of Mathematics, Triangular Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A000217,
A000290,
A000537,
A001477,
A002415,
A008911,
A047928,
A059270,
A083374,
A126274,
A163932,
A228317
-
[n^2*(n^2-1)/4: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
-
A006011 := proc(n)
n^2*(n^2-1)/4 ;
end proc: # R. J. Mathar, Nov 29 2015
-
Table[n^2 (n^2 - 1)/4, {n, 0, 38}]
Binomial[Range[20]^2, 2]/2 (* Eric W. Weisstein, Sep 08 2017 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 18, 60, 150}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
CoefficientList[Series[-3 x (1 + x)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
Join[{0},Times@@@Partition[Accumulate[Range[0,40]],2,1]] (* Harvey P. Dale, Aug 08 2025 *)
-
a(n)=binomial(n^2,2)/2 \\ Charles R Greathouse IV, Jun 27 2013
A102038
a(n+1) = n*a(n) + a(n-1), a(1)=1, a(2)=2.
Original entry on oeis.org
1, 2, 5, 17, 73, 382, 2365, 16937, 137861, 1257686, 12714721, 141119617, 1706150125, 22321071242, 314201147513, 4735338283937, 76079613690505, 1298088771022522, 23441677492095901, 446689961120844641
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..449
- Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020.
- Zhicong Lin and Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672.
- Shuzhen Lv and Philip B. Zhang, Joint equidistributions of mesh patterns 123 and 321 with symmetric and antipodal shadings, arXiv:2501.00357 [math.CO], 2024. See p. 17.
-
a:=[1,2];; for n in [3..30] do a[n]:=(n-1)*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Feb 23 2019
-
I:=[1,2]; [n le 2 select I[n] else (n-1)*Self(n-1) +Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 23 2019
-
a[1]= 1; a[2]= 2; a[n_]:= a[n] = (n-1)*a[n-1]+a[n-2]; Table[a[n], {n,20}] (* Robert G. Wilson v, Feb 14 2005 *)
RecurrenceTable[{a[1]==1,a[2]==2,a[n+1]==n*a[n]+a[n-1]},a,{n,20}] (* Harvey P. Dale, Sep 04 2018 *)
-
a(n)=sum(k=0,n,k!*binomial((n+k)\2,k)*binomial((n+k+1)\2,k)) \\ Paul D. Hanna, Oct 31 2006
-
[sum(factorial(k)*binomial(floor((n+k-1)/2), k)*binomial(floor((n+k)/2), k) for k in (0..n)) for n in (1..30)] # G. C. Greubel, Feb 23 2019
A091964
Number of left factors of peakless Motzkin paths of length n.
Original entry on oeis.org
1, 2, 4, 9, 21, 50, 121, 296, 730, 1812, 4521, 11328, 28485, 71844, 181674, 460443, 1169283, 2974574, 7578937, 19337489, 49401526, 126350742, 323495259, 829033334, 2126454271, 5458711430, 14023219126, 36049991901, 92734505565
Offset: 0
a(2)=4 because we have hh, hu, uh and uu.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Enumerative Aspects, in International Conference on Language and Automata Theory and Applications, S. Klein, C. Martín-Vide, D. Shapira (eds), Springer, Cham, pp 195-206, 2018.
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- Ivo L. Hofacker, Christian M. Reidys, and Peter F. Stadler, Symmetric circular matchings and RNA folding. Discr. Math., 312:100-112, 2012. See Prop. 5, C_2^{1}(z).
- Asamoah Nkwanta, Lattice paths and RNA secondary structures, DIMACS Series in Discrete Math. and Theoretical Computer Science, 34, 1997, 137-147.
- Helmut Prodinger, Cornerless, peakless, valleyless Motzkin paths (regular and skew) and applications to bargraphs, arXiv:2501.13645 [math.CO], 2025. See p. 8.
-
[(&+[Binomial(Floor((n+k)/2),k)*Binomial(Floor((n+k+1)/2),k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 26 2019
-
CoefficientList[Series[2/(1-3*x+x^2+Sqrt[1-2*x-x^2-2*x^3+x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
-
a(n)=sum(k=0,n,binomial(n-k\2,(k+1)\2)*binomial(n-(k+1)\2,k\2)) \\ Paul D. Hanna, Mar 24 2005
-
a(n)=sum(k=0,n,binomial((n+k)\2,k)*binomial((n+k+1)\2,k)) \\ Paul D. Hanna, Oct 31 2006
-
[sum(binomial(floor((n+k)/2),k)*binomial(floor((n+k+1)/2),k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 26 2019
A056953
Denominators of continued fraction for alternating factorial.
Original entry on oeis.org
1, 1, 2, 3, 7, 13, 34, 73, 209, 501, 1546, 4051, 13327, 37633, 130922, 394353, 1441729, 4596553, 17572114, 58941091, 234662231, 824073141, 3405357682, 12470162233, 53334454417, 202976401213, 896324308634, 3535017524403, 16083557845279, 65573803186921
Offset: 0
-
[(&+[Factorial(k)*Binomial(Floor(n/2),k)*Binomial(Floor((n+1)/2),k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, May 16 2018
-
a:= proc(n) option remember; `if`(n<4, [1, 1, 2, 3][n+1],
((4*n-2)*a(n-2) +2*a(n-3) -(n-2)*(n-3)*a(n-4)) /4)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 14 2013
-
Table[Sum[k!*Binomial[Floor[n/2], k]*Binomial[Floor[(n+1)/2], k] , {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, May 16 2018 *)
-
a(n)=sum(k=0,n\2,k!*binomial(n\2,k)*binomial((n+1)\2,k)) \\ Paul D. Hanna, Oct 31 2006
A191521
Triangle read by rows: T(n,k) is the number of left factors of Dyck paths of length n that have k valleys (i.e., a (1,-1)-step followed by a (1,1)-step).
Original entry on oeis.org
1, 1, 2, 2, 1, 3, 3, 3, 6, 1, 4, 12, 4, 4, 18, 12, 1, 5, 30, 30, 5, 5, 40, 60, 20, 1, 6, 60, 120, 60, 6, 6, 75, 200, 150, 30, 1, 7, 105, 350, 350, 105, 7, 7, 126, 525, 700, 315, 42, 1, 8, 168, 840, 1400, 840, 168, 8, 8, 196, 1176, 2450, 1960, 588, 56, 1, 9, 252, 1764, 4410, 4410, 1764, 252, 9
Offset: 0
T(4,1)=3 because we have U(DU)D, U(DU)U, and UU(DU), where U=(1,1) and D=(1,-1) (the valleys are shown between parentheses).
Triangle starts:
1;
1;
2;
2, 1;
3, 3;
3, 6, 1;
4, 12, 4;
4, 18, 12, 1;
...
-
Q := sqrt(((1-z)^2-t*z^2)*((1+z)^2-t*z^2)): G := (1+t*z^2-z^2-Q)/(t*z*(t*z^2-1+2*z-z^2+Q)): Gser := simplify(series(G, z = 0, 19)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: 1; for n to 16 do seq(coeff(P[n], t, k), k = 0 .. ceil((1/2)*n)-1) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y, t) option remember; expand(`if`(x=0, 1,
`if`(y>0, b(x-1, y-1, z), 0)+b(x-1, y+1, 1)*t))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)):
seq(T(n), n=0..30); # Alois P. Heinz, Mar 29 2017
-
T[n_, m_] := If [n == 0 && m == 0, 1, If[n == 0, 0, If[OddQ[n-1], (2* Binomial[n/2, m]*Binomial[n/2, m+1]*(n/2 + 1))/n, Binomial[(n+1)/2, m+1]*Sum[(-1)^(k-1)*Binomial[(n+1)/2, m-k+1], {k, 1, (n+1)/2}]]]];
Table[T[n, m], {n, 0, 16}, {m, 0, If[n <= 2, 0, Quotient[n-1, 2]]}] // Flatten (* Jean-François Alcover, Feb 16 2021, after Vladimir Kruchinin *)
-
T(n,m):=if n=0 and m=0 then 1 else if n=0 then 0 else if oddp(n-1) then (2*binomial(n/2,m)*binomial(n/2,m+1)*(n/2+1))/n else binomial((n+1)/2,m+1)*sum((-1)^(k-1)*binomial((n+1)/2,m-k+1),k,1,(n+1)/2);
/* Vladimir Kruchinin, Jul 24 2019 */
A124431
a(n) = Sum_{k=0..n} 2^k*C([(n+k)/2],k)*C([(n+k+1)/2],k) where [x]=floor(x).
Original entry on oeis.org
1, 3, 9, 29, 97, 331, 1145, 4001, 14089, 49915, 177713, 635293, 2278841, 8198227, 29567729, 106872961, 387038993, 1404052659, 5101219929, 18559193245, 67605310097, 246541193883, 899999057385, 3288522934433, 12026324883865
Offset: 0
G.f. = 1 + 3*x + 9*x^2 + 29*x^3 + 97*x^4 + 331*x^5 + 1145*x^6 + 4001*x^7 + ...
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt((1+x^2)/(1-4*x+x^2)) -1)/(2*x) )); // G. C. Greubel, Feb 26 2019
-
Table[Sum[2^k Binomial[Floor[(n+k)/2],k]Binomial[Floor[(n+k+1)/2],k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, May 20 2012 *)
CoefficientList[Series[(Sqrt[(1+x^2)/(1-4*x+x^2)] -1)/(2*x), {x,0,30}],x] (* G. C. Greubel, Feb 26 2019 *)
-
a(n)=sum(k=0,n,2^k*binomial((n+k)\2,k)*binomial((n+k+1)\2,k))
-
my(x='x+O('x^30)); Vec((sqrt((1+x^2)/(1-4*x+x^2)) -1)/(2*x)) \\ G. C. Greubel, Feb 26 2019
-
((sqrt((1+x^2)/(1-4*x+x^2)) -1)/(2*x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019
A191579
Triangular array related to continued fractions of square root of (N^2 - 1) for N>1, apparently containing A004148 and summing to A091964.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 4, 6, 6, 4, 1, 8, 13, 13, 10, 5, 1, 17, 28, 30, 24, 15, 6, 1, 37, 62, 69, 59, 40, 21, 7, 1, 82, 140, 160, 144, 105, 62, 28, 8, 1, 185, 320, 375, 350, 271, 174, 91, 36, 9, 1, 423, 740, 885, 852, 690, 474, 273, 128, 45, 10, 1
Offset: 1
The triangle begins
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
4, 6, 6, 4, 1;
8, 13, 13, 10, 5, 1;
17, 28, 30, 24, 15, 6, 1;
37, 62, 69, 59, 40, 21, 7, 1;
82, 140, 160, 144, 105, 62, 28, 8, 1;
185, 320, 375, 350, 271, 174, 91, 36, 9, 1;
423, 740, 885, 852, 690, 474, 273, 128, 45, 10, 1;
...
The 4th row is 2,3,3,1 because the 2nd,4th,6th and 8th terms of columns j = 1-5 of square array T(i,j) A192062 form the 4*5 matrix {{1,3,8,21},{1,4,15,56},{1,5,24,115},{1,6,35,204},{1,7,48,329}}. Solving the resulting system of linear equations results in the identities:
2*1 + 3*3 + 3*8 + 1*21 = 56 = T(8,2) of A192062
2*1 + 3*4 + 3*15+ 1*56 = 115 = T(8,3) of A192062
2*1 + 3*5 + 3*24 + 1*115 = 204 = T(8,4) of A192062
2*1 + 3*6 + 3*35 + 1*204 = 329 = T(8,5) of A192062
Showing 1-10 of 10 results.
Comments