A298646 a(n) is the sum of the degrees of asymmetry of all Dyck paths of semilength n.
0, 0, 4, 18, 88, 360, 1524, 6090, 24784, 98244, 393820, 1556324, 6196656, 24461424, 97079220, 383132250, 1518103840, 5992343940, 23726184372, 93686670220, 370840981680, 1464969055368, 5798679839524, 22917832613988, 90725318348448, 358737952183800
Offset: 1
Keywords
Examples
a(3) = 4. Indeed, showing the step levels, the 5 = A000108(3) Dyck paths of semilength 3 are 111111, 122221, 123321, 111221, 122111. The first 3 are symmetric (degree of asymmetry 0) and each of the last 2 has degree of asymmetry 2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1664
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [0$3, 4][n+1], ( 2*(n-1)*(34328*n^3+1024539*n^2-2260739*n-3203910)*n*a(n-1) +24*(n-1)*(63276*n^4-396683*n^3+460919*n^2+544393*n-1067970)* a(n-2)-32*(34328*n^5+784243*n^4-7831140*n^3+24334466*n^2 -31463717*n+15037140)*a(n-3)-128*(n-3)*(n-4)*(2*n-7)*(38875*n^2 -225739*n+246552)*a(n-4))/((n+2)*(n+1)*n*(56039*n^2-121145*n-130144))) end: seq(a(n), n=1..30); # Alois P. Heinz, Feb 21 2018
-
Mathematica
b[x_, y_, v_] := b[x, y, v] = Expand[If[Min[y, v, x - Max[y, v]] < 0, 0, If[x == 0, 1, Function[l, Sum[Sum[If[y == v + (j - i)/2, 1, z] b[x - 1, y + i, v + j], {i, l}], {j, l}]][{-1, 1}]]]]; g[n_] := g[n] = Sum[b[n, j, j], {j, 0, n}]; T[n_, k_] := Coefficient[g[n], z, k]; a[n_] := Sum[k T[n, k], {k, 0, n - 1}]; Array[a, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A298645 *)
Formula
a(n) = Sum_{k=0..n-1} k*A298645(n,k).
a(n) = (2*(n-1)*(34328*n^3 + 1024539*n^2 - 2260739*n - 3203910)*n*a(n-1) + 24*(n-1)*(63276*n^4 - 396683*n^3 + 460919*n^2 + 544393*n - 1067970)* a(n-2) - 32*(34328*n^5 + 784243*n^4 - 7831140*n^3 + 24334466*n^2 - 31463717*n + 15037140)*a(n-3) - 128*(n-3)*(n-4)*(2*n-7)*(38875*n^2 - 225739*n + 246552)*a(n-4))/((n+2)*(n+1)*n*(56039*n^2 - 121145*n - 130144)) for n>3, a(n) = 0 for n<3, a(3) = 4. - Alois P. Heinz, Feb 28 2018
a(n) ~ 4^n / sqrt(Pi*n) * (1 - 2/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 06 2018
Comments