A191662 a(n) = n! / A000034(n-1).
1, 1, 6, 12, 120, 360, 5040, 20160, 362880, 1814400, 39916800, 239500800, 6227020800, 43589145600, 1307674368000, 10461394944000, 355687428096000, 3201186852864000, 121645100408832000, 1216451004088320000, 51090942171709440000, 562000363888803840000
Offset: 1
Crossrefs
Programs
-
Maple
A191662:= proc(n): n!/A000034(n-1) end: A000034 := proc(n) op((n mod 2)+1, [1, 2]) ; end proc: seq(A191662(n),n=1..17); # Johannes W. Meijer, Jun 22 2011
-
Mathematica
Array[If[EvenQ[#],#!/2,#!]&,20] (* Harvey P. Dale, Mar 14 2014 *)
Formula
a(2*n-1) = (2*n-1)!, a(2*n) = (2*n)!/2.
a(n+1) = A064680(n+1) * a(n).
From Amiram Eldar, Jul 06 2022: (Start)
Sum_{n>=1} 1/a(n) = sinh(1) + 2*cosh(1) - 2.
Sum_{n>=1} (-1)^(n+1)/a(n) = sinh(1) - 2*cosh(1) + 2. (End)
D-finite with recurrence: a(n) - (n-1)*n*a(n-2) = 0 for n >= 3 with a(1)=a(2)=1. - Georg Fischer, Nov 25 2022
a(n) = A052612(n)/2 for n >= 1. - Alois P. Heinz, Sep 05 2023
Extensions
More terms from Harvey P. Dale, Mar 14 2014
Comments