A191681 a(n) = (9^n - 1)/2.
0, 4, 40, 364, 3280, 29524, 265720, 2391484, 21523360, 193710244, 1743392200, 15690529804, 141214768240, 1270932914164, 11438396227480, 102945566047324, 926510094425920, 8338590849833284, 75047317648499560, 675425858836496044
Offset: 0
Examples
a(2)=40: there are 40 compositions of odd numbers into 2 parts < 9: 1: (0,1),(1,0); 3: (0,3),(3,0),(1,2),(2,1); 5: (0,5),(5,0),(1,4),(4,1),(2,3),(3,2); 7: (0,7),(7,0),(1,6),(6,1),(2,5),(5,2),(3,4),(4,3); 9: (1,8),(8,1),(2,7),(7,2),(3,6),(6,3),(4,5),(5,4); 11: (3,8),(8,3),(4,7),(7,4),(5,6),(6,5); 13: (5,8),(8,5),(6,7),(7,6); 15: (7,8),(8,7).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Adi Dani, Restricted compositions of natural numbers
- Rani Siromoney and K. G. Subramanian, Space-filling curves and infinite graphs, International Workshop on Graph Grammars and Their Application to Computer Science, 1982.
- Index entries for linear recurrences with constant coefficients, signature (10,-9).
Programs
-
Magma
[(9^n-1)/2: n in [0..30]]; // Vincenzo Librandi, Jun 16 2011
-
Mathematica
Table[(9^n - 1)/2, {n, 0, 19}] LinearRecurrence[{10,-9},{0,4},30] (* Harvey P. Dale, Jun 19 2011 *)
-
PARI
a(n)=9^n\2 \\ Charles R Greathouse IV, Oct 16 2015
Formula
a(0)=0, a(1)=4, a(n) = 10*a(n-1) - 9*a(n-2). - Harvey P. Dale, Jun 19 2011
G.f.: 4*x / ((x-1)*(9*x-1)). - Colin Barker, May 16 2013
Extensions
Example corrected by L. Edson Jeffery, Feb 13 2015
Comments