A083064
Square number array T(n,k) = (k*(k+2)^n+1)/(k+1) read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 43, 41, 1, 1, 6, 29, 94, 171, 122, 1, 1, 7, 41, 173, 469, 683, 365, 1, 1, 8, 55, 286, 1037, 2344, 2731, 1094, 1, 1, 9, 71, 439, 2001, 6221, 11719, 10923, 3281, 1, 1, 10, 89, 638, 3511, 14006, 37325, 58594, 43691, 9842, 1
Offset: 0
Rows begin:
1 1 1 1 1 1 1 1 1 ...
1 2 5 14 41 122 365 1094 3281 ... A007051
1 3 11 43 171 683 2731 10923 43691 ... A007583
1 4 19 94 469 2344 11719 58594 292969 ... A083065
1 5 29 173 1037 6221 37325 223949 1343693 ... A083066
1 6 41 286 2001 14006 98041 686286 4804001 ... A083067
1 7 55 439 3511 28087 224695 1797559 14380471 ... A083068
1 8 71 638 5741 51668 465011 4185098 37665881 ... A187709
1 9 89 889 8889 88889 888889 8888889 88888889 ... A059482
1 10 109 1198 13177 144946 1594405 17538454 192922993 ... A199760, etc.
Column 2: A000027;
column 3: A028387;
column 4: A083074;
column 5: A125082;
column 6: A125083.
Diagonals:
1, 2, 11, 94, 1037, 14006, ... A083069;
1, 3, 19, 173, 2001, 28087, ... A083071;
1, 4, 29, 286, 3511, 51668, ... A083072;
1, 5, 41, 439, 5741, 88889, ... A083073;
1, 5, 43, 469, 6221, 98041, ... A083070;
1, 14, 171, 2344, 37325, 686286, ... A191690.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 11, 14, 1;
1, 5, 19, 43, 41, 1;
1, 6, 29, 94, 171, 122, 1; etc.
Cf. rows:
A007051,
A007583,
A059482,
A083065 -
A083068,
A187709,
A199760; columns:
A000027,
A028387,
A083074,
A125082,
A125083; diagonals:
A083069 -
A083073,
A191690.
A117667
a(n) = n^n-n^(n-1)-n^(n-2)-n^(n-3)-...-n^3-n^2-n.
Original entry on oeis.org
1, 2, 15, 172, 2345, 37326, 686287, 14380472, 338992929, 8888888890, 256780503551, 8105545862052, 277635514376233, 10257237069745862, 406615755353655135, 17216961135462248176, 775537745518440716417
Offset: 1
Luc Stevens (lms022(AT)yahoo.com), Apr 11 2006
a(3) = 3^3-3^2-3 = 27-9-3 = 15.
-
a:=n->n^n-sum(n^j,j=1..n-1): seq(a(n),n=1..19); # Emeric Deutsch, Apr 16 2006
-
s[n_] := Sum[n^i, {i, 1, n - 1}]; Table[n^n - s[n], {n, 17}] (* Carlos Eduardo Olivieri, Apr 14 2015 *)
f[n_] := ((n - 2) n^n + n)/(n - 1); f[1] = 1; Array[f, 18] (* Robert G. Wilson v, Apr 15 2015 *)
A191624
Largest prime factor of n^n - n^(n-1) - n^(n-2) - ... - n^2 - n - 1.
Original entry on oeis.org
7, 19, 293, 1493, 179, 1091, 10593529, 379721, 165664841, 66987982331, 240717199, 28048051, 133933781, 25506609089573701, 107140256350247, 793435901761, 268232479553269300213, 4075297, 3063504618316968426599, 1372263056872621, 7514001866134191512025247
Offset: 3
-
A006530 := proc(n) max ( numtheory[factorset](n) ) ;end proc:
A191690 := proc(n) n^n-add( n^j,j=0..n-1) ;end proc:
A191624 := proc(n) A006530(A191690(n)) ; end proc:
seq(A191624(n),n=3..15) ; # R. J. Mathar, Jun 23 2011
-
Table[With[{s=n^Range[0,n]},FactorInteger[Last[s]-Total[Most[s]]][[-1,1]]],{n,3,20}] (* Harvey P. Dale, Feb 02 2015 *)
-
a(n) = if(n==0, return(1)); vecmax(factor(n^n - (n^n-1)/(n-1))[,1]); \\ Daniel Suteu, Jun 09 2022
Showing 1-3 of 3 results.