cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191760 Digital root of the n-th odd square.

Original entry on oeis.org

1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1, 1, 9, 7, 4, 9, 4, 7, 9, 1
Offset: 1

Views

Author

Ant King, Jun 17 2011

Keywords

Comments

This sequence is periodic with period <1,9,7,4,9,4,7,9,1> of length nine.
Related to the continued fraction of (153727+sqrt(2207057870693))/1477642 = 1+ 1/(9+1/(7+1/...)). - R. J. Mathar, Jun 27 2011

Examples

			The fifth, odd square number is 81 which has digital root 9. Hence a(5)=9.
		

Crossrefs

Programs

  • Mathematica
    DigitalRoot[n_Integer?Positive]:=FixedPoint[Plus@@IntegerDigits[#]&,n];DigitalRoot[#] &/@((2#-1)^2 &/@Range[81])
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 9, 7, 4, 9, 4, 7, 9, 1},81] (* Ray Chandler, Aug 25 2015 *)
    PadRight[{},120,{1,9,7,4,9,4,7,9,1}] (* Harvey P. Dale, Jun 26 2021 *)

Formula

a(n) = 3*(1+cos(2(n-2)pi/3)+cos(4(n-2)pi/3)) +mod( (1+n)(1+7n-7n^2+7n^3+n^4-n^5+3n^6+3n^7), 9).
a(n) = a(n-9).
a(n) = 51-a(n-1)-a(n-2)-a(n-3)-a(n-4)-a(n-5)-a(n-6)-a(n-7)-a(n-8).
a(n) = A010888(A016754(n)).
G.f.: x(1+9x+7x^2+4x^3+9x^4+4x^5+7x^6+9x^7+x^8)/( (1-x)*(1+x+x^2)*(1+x^3+x^6) ) (note that the coefficients of x in the numerator are precisely the terms that constitute the periodic cycle of the sequence).
a(n) = A056992(2n-1). - R. J. Mathar, Jun 27 2011