cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191797 a(n) = binomial(F(n), 2) where F(n) = A000045(n).

Original entry on oeis.org

0, 0, 0, 1, 3, 10, 28, 78, 210, 561, 1485, 3916, 10296, 27028, 70876, 185745, 486591, 1274406, 3337236, 8738290, 22879230, 59901985, 156830905, 410597496, 1074972528, 2814337800, 7368069528, 19289917153, 50501756955, 132215475106, 346144864780, 906219437046
Offset: 0

Views

Author

Emeric Deutsch, Jun 21 2011

Keywords

Examples

			a(7) = binomial(13,2) = 78.
		

Crossrefs

Cf. A000045, A000071, A000217, A001622, A056014, A094825 (binomial transform), A122931.

Programs

  • Maple
    with(combinat): seq(binomial(fibonacci(n), 2), n = 0 .. 30);
  • Mathematica
    Table[Binomial[Fibonacci[n], 2], {n, 0, 39}] (* Alonso del Arte, Apr 04 2013 *)
  • PARI
    a(n) = binomial(fibonacci(n), 2); \\ Michel Marcus, Sep 07 2015
    
  • PARI
    concat(vector(3), Vec(x^3 / ((1+x)*(1-x-x^2)*(1-3*x+x^2)) + O(x^40))) \\ Colin Barker, Mar 26 2017
    
  • Python
    from sympy import binomial, fibonacci
    def a(n): return binomial(fibonacci(n), 2) # Indranil Ghosh, Mar 26 2017

Formula

a(n) = 3*a(n-1) + 1*a(n-2) - 5*a(n-3) - 1*a(n-4) + 1*a(n-5).
G.f.: x^3/(1-3*x-x^2+5*x^3+x^4-x^5) = x^3/((1+x)*(1-x-x^2)*(1-3*x+x^2)).
a(n) + a(n+1) = A056014(n+1). - R. J. Mathar, Jun 24 2011
a(n) = (2*F(n)^2 - F(n+4) + 3*F(n+1))/4, F(n) = A000045(n). - Gary Detlefs, Jan 05 2013
a(n) = Sum_{k=1..n-2} A122931(k). - J. M. Bergot, Apr 05 2013
a(n) = A000217(A000071(n)). - Peter M. Chema, Mar 26 2017
a(n) = (2^(-1-n)*(-(-1)^n*2^(1+n) + sqrt(5)*(1-sqrt(5))^n + (3-sqrt(5))^n - sqrt(5)*(1+sqrt(5))^n + (3+sqrt(5))^n)) / 5. - Colin Barker, Mar 26 2017
a(n) ~ phi^(2*n) / 10, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 26 2025