A122931 Row sums of triangular array A122930.
1, 2, 7, 18, 50, 132, 351, 924, 2431, 6380, 16732, 43848, 114869, 300846, 787815, 2062830, 5401054, 14140940, 37022755, 96928920, 253766591, 664375032, 1739365272, 4553731728, 11921847625, 31211839802, 81713718151, 213929389674
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,1,-5,-1,1).
Crossrefs
Programs
-
Maple
A000045 := proc(n) if n <= 1 then RETURN(n) ; else RETURN( A000045(n-1)+A000045(n-2)) ; fi ; end: A000071 := proc(n) RETURN(A000045(n)-1) ; end: A122931 := proc(n) local a45 ; a45 := A000045(n) ; RETURN (a45*(A000071(n+1)+(a45+1)/2)) ; end: for n from 1 to 30 do printf("%d,",A122931(n)) ; od ; # R. J. Mathar, Oct 07 2006
-
Mathematica
(#[[2]]^2-#[[1]]^2-#[[2]]+#[[1]])/2&/@Partition[Fibonacci[ Range[ 2,30]],2,1] (* or *) Module[{nn=30,fib},fib=Fibonacci[Range[nn]];Total/@ TakeList[ Range[Total[ fib]], fib]](* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Nov 19 2018 *)
Formula
From R. J. Mathar, Oct 07 2006: (Start)
a(n) = (F(n+2)^2 - F(n+1)^2 - F(n+2) + F(n+1))/2 where F(n)=Fibonacci(n). - Gary Detlefs, Mar 10 2011
G.f.: x*(1-x)/((1+x)*(1-3*x+x^2)*(1-x-x^2)). - Colin Barker, Mar 12 2012
a(n) = F(n)*(F(n+3)-1)/2. - J. M. Bergot, Mar 16 2013
a(n) = (F(n+1) - 1)*(F(n+2) + 1)/2 + (n mod 2). - Greg Dresden, Sep 25 2021
Extensions
More terms from R. J. Mathar, Oct 07 2006
Comments