cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A191797 a(n) = binomial(F(n), 2) where F(n) = A000045(n).

Original entry on oeis.org

0, 0, 0, 1, 3, 10, 28, 78, 210, 561, 1485, 3916, 10296, 27028, 70876, 185745, 486591, 1274406, 3337236, 8738290, 22879230, 59901985, 156830905, 410597496, 1074972528, 2814337800, 7368069528, 19289917153, 50501756955, 132215475106, 346144864780, 906219437046
Offset: 0

Views

Author

Emeric Deutsch, Jun 21 2011

Keywords

Examples

			a(7) = binomial(13,2) = 78.
		

Crossrefs

Cf. A000045, A000071, A000217, A001622, A056014, A094825 (binomial transform), A122931.

Programs

  • Maple
    with(combinat): seq(binomial(fibonacci(n), 2), n = 0 .. 30);
  • Mathematica
    Table[Binomial[Fibonacci[n], 2], {n, 0, 39}] (* Alonso del Arte, Apr 04 2013 *)
  • PARI
    a(n) = binomial(fibonacci(n), 2); \\ Michel Marcus, Sep 07 2015
    
  • PARI
    concat(vector(3), Vec(x^3 / ((1+x)*(1-x-x^2)*(1-3*x+x^2)) + O(x^40))) \\ Colin Barker, Mar 26 2017
    
  • Python
    from sympy import binomial, fibonacci
    def a(n): return binomial(fibonacci(n), 2) # Indranil Ghosh, Mar 26 2017

Formula

a(n) = 3*a(n-1) + 1*a(n-2) - 5*a(n-3) - 1*a(n-4) + 1*a(n-5).
G.f.: x^3/(1-3*x-x^2+5*x^3+x^4-x^5) = x^3/((1+x)*(1-x-x^2)*(1-3*x+x^2)).
a(n) + a(n+1) = A056014(n+1). - R. J. Mathar, Jun 24 2011
a(n) = (2*F(n)^2 - F(n+4) + 3*F(n+1))/4, F(n) = A000045(n). - Gary Detlefs, Jan 05 2013
a(n) = Sum_{k=1..n-2} A122931(k). - J. M. Bergot, Apr 05 2013
a(n) = A000217(A000071(n)). - Peter M. Chema, Mar 26 2017
a(n) = (2^(-1-n)*(-(-1)^n*2^(1+n) + sqrt(5)*(1-sqrt(5))^n + (3-sqrt(5))^n - sqrt(5)*(1+sqrt(5))^n + (3+sqrt(5))^n)) / 5. - Colin Barker, Mar 26 2017
a(n) ~ phi^(2*n) / 10, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 26 2025

A122930 Triangular array read by rows, based on the Zeckendorf expansion of n and containing the golden rectangle sequence A001629.

Original entry on oeis.org

1, 0, 2, 1, 0, 6, 1, 2, 0, 15, 2, 2, 6, 0, 40, 3, 4, 6, 15, 0, 104, 5, 6, 12, 15, 40, 0, 273, 8, 10, 18, 30, 40, 104, 0, 714, 13, 16, 30, 45, 80, 104, 273, 0, 1870, 21, 26, 48, 75, 120, 208, 273, 714, 0, 4895, 34, 42, 78, 120, 200, 312, 546, 714, 1870, 0, 12816
Offset: 1

Views

Author

Alford Arnold, Sep 20 2006

Keywords

Examples

			The array begins:
  1
  0 2
  1 0 6
  1 2 0 15
  2 2 6 0 40
  3 4 6 15 0 104
  5 6 12 15 40 0 273
Row five is:
  2 2 6 0 40
because the values
  1 2 3 5 8 in Zeckendorf's expansion occur
  2 1 2 0 5 times for natural numbers 8 through 12.
		

Crossrefs

Programs

  • Mathematica
    seq[rownum_] := Plus @@@ SplitBy[(#*Fibonacci[Range[2, Length[#] + 1]]) & /@ Reverse /@ IntegerDigits[FromDigits /@ Select[Tuples[{0, 1}, rownum], SequenceCount[#, {1, 1}] == 0 &]], Length] // Flatten; seq[11] (* Amiram Eldar, Jun 28 2025 *)

Extensions

More terms from Amiram Eldar, Jun 28 2025

A301809 Group the natural numbers such that the first group is (1) then (2),(3),(4,5),(6,7,8),... with the n-th group containing F(n) sequential terms where F(n) is the n-th Fibonacci number (A000045(n)). Sequence gives the sum of terms in the n-th group.

Original entry on oeis.org

1, 2, 3, 9, 21, 55, 140, 364, 945, 2465, 6435, 16821, 43992, 115102, 301223, 788425, 2063817, 5402651, 14143524, 37026936, 96935685, 253777537, 664392743, 1739393929, 4553778096, 11921922650, 31211961195, 81713914569, 213929707485, 560075086495, 1466295355580, 3838810662436, 10050136117497
Offset: 1

Views

Author

Frank M Jackson, Mar 27 2018

Keywords

Comments

a(n) is the sum of all nodes at height n-1 within a binary tree structure recursively built from the Hofstadter G-sequence (see comments for A005206).

Examples

			a(7) = 14 + 15 + 16 + ... + 21 = (F(9)+1)*F(6)/2 = 140.
		

Crossrefs

Programs

  • Magma
    [1] cat [(Fibonacci(n+2)+1)*Fibonacci(n-1) div 2 : n in [2..35] ]; // Vincenzo Librandi, Apr 18 2018
    
  • Mathematica
    a[n_] := If[n==1, 1, (Fibonacci[n+2]+1)Fibonacci[n-1]/2]; Array[a, 50]
    Join[{1}, LinearRecurrence[{3, 1, -5, -1, 1}, {2, 3, 9, 21, 55}, 40]] (* Vincenzo Librandi, Apr 18 2018 *)
  • PARI
    a(n) = if (n==1, 1, (fibonacci(n+2)+1)*fibonacci(n-1)/2); \\ Michel Marcus, Apr 21 2018
    
  • PARI
    Vec(x*(1 - x)*(1 - 4*x^2 - x^3 + x^4) / ((1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)) + O(x^60)) \\ Colin Barker, May 11 2018

Formula

a(1) = 1 and for n > 1, a(n) = (F(n+2)+1)*F(n-1)/2, where F(n) is the n-th Fibonacci number (A000045).
From Colin Barker, Mar 27 2018: (Start)
G.f.: x*(1 - x)*(1 - 4*x^2 - x^3 + x^4) / ((1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)).
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5) for n>6. (End)
a(n) = A033192(n+1) - A033192(n) for n > 1. - J.S. Seneschal, Jul 07 2025
Showing 1-3 of 3 results.