cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191821 a(n) = n*(2^n - n + 1) + 2^(n-1)*(n^2 - 3*n + 2).

Original entry on oeis.org

2, 6, 26, 100, 332, 994, 2774, 7368, 18872, 47014, 114578, 274300, 647012, 1507146, 3473198, 7929616, 17956592, 40369870, 90177194, 200277636, 442498652, 973078066, 2130705926, 4647288280, 10099883432, 21877489014, 47244639554, 101737037068
Offset: 1

Views

Author

Adeniji, Adenike, Jun 17 2011

Keywords

Comments

Conjecture: generating function = -((2 (-1+6 x-19 x^2+31 x^3-22 x^4+4 x^5))/(1-3 x+2 x^2)^3) - Harvey P. Dale, May 10 2021

Crossrefs

Programs

  • Magma
    [n*(2^n-n+1)+2^(n-1)*(n^2-3*n+2): n in [1..40]]; // Vincenzo Librandi, Nov 25 2011
  • Mathematica
    LinearRecurrence[{9,-33,63,-66,36,-8},{2,6,26,100,332,994},50] (* Vincenzo Librandi, Nov 25 2011 *)
    Table[n(2^n-n+1)+2^(n-1) (n^2-3n+2),{n,30}] (* Harvey P. Dale, May 10 2021 *)
  • PARI
    a(n)=(n^2-n+2)<<(n-1)-n*(n-1) \\ Charles R Greathouse IV, Jul 13 2011
    

Formula

G.f.: -2*x*(-1 + 6*x - 19*x^2 + 31*x^3 - 22*x^4 + 4*x^5) / ( (2*x-1)^3*(x-1)^3 ). - R. J. Mathar, Aug 26 2011