cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191829 a(n) = Sum_{i+j+k=n, i,j,k >= 1} tau(i)*tau(j)*tau(k), where tau() = A000005().

Original entry on oeis.org

0, 0, 1, 6, 18, 41, 78, 132, 209, 306, 435, 591, 780, 1008, 1268, 1584, 1917, 2335, 2751, 3294, 3776, 4467, 5034, 5875, 6522, 7548, 8250, 9498, 10260, 11734, 12546, 14268, 15134, 17151, 18018, 20361, 21234, 23907, 24818, 27834, 28677, 32218, 32937, 36825, 37672, 41970, 42576, 47633, 48006, 53436, 54008, 59868, 60042, 67020, 66690
Offset: 1

Views

Author

N. J. A. Sloane, Jun 17 2011

Keywords

Comments

This is Andrews's D_{0,0,0}(n).

Crossrefs

Programs

  • Maple
    with(numtheory);
    D000:=proc(n) local t1,i,j;
    t1:=0;
    for i from 1 to n-1 do
    for j from 1 to n-1 do
    if (i+j < n) then t1 := t1+numtheory:-tau(i)*numtheory:-tau(j)*numtheory:-tau(n-i-j); fi;
    od; od;
    t1;
    end;
    [seq(D000(n),n=1..60)];
    # second Maple program:
    b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[tau](n)), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=1..55);  # Alois P. Heinz, Feb 01 2021
  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[(-1/2 + (Log[1-x] + QPolyGamma[0, 1, 1/x])/Log[x])^3, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 01 2017 *)
  • Python
    from sympy import divisor_count
    def A191829(n): return sum(divisor_count(i)*sum(divisor_count(j)*divisor_count(n-i-j) for j in range(1,n-i)) for i in range(1,n-1)) # Chai Wah Wu, Jul 25 2024

Formula

G.f.: (Sum_{k>=1} x^k/(1 - x^k))^3. - Ilya Gutkovskiy, Jan 01 2017
a(n) = Sum_{k=1..n-1} Sum_{i=1..k-1} tau(i)*tau(n-k)*tau(k-i). - Ridouane Oudra, Oct 30 2023