A059820
Expansion of series related to Liouville's Last Theorem: g.f. Sum_{t>0} (-1)^(t+1) *x^(t*(t+1)/2) / ( (1-x^t)^3 *Product_{i=1..t} (1-x^i) ).
Original entry on oeis.org
0, 1, 4, 9, 19, 30, 52, 70, 107, 136, 191, 226, 314, 352, 463, 523, 664, 717, 919, 964, 1205, 1282, 1546, 1603, 1992, 2009, 2414, 2504, 2958, 2974, 3606, 3553, 4223, 4273, 4936, 4912, 5885, 5685, 6634, 6654, 7664, 7454, 8822, 8454, 9845
Offset: 0
-
Mk := proc(k) -1*add( (-1)^n*q^(n*(n+1)/2)/(1-q^n)^k/mul(1-q^i,i=1..n), n=1..101): end; # with k=3
-
D(x, y, n) = sum(k=1, n-1, sigma(k, x)*sigma(n-k, y));
D000(n) = sum(k=1, n-1, sigma(k, 0)*D(0, 0, n-k));
a(n) = if(n==0, 0, (3*D(0, 0, n)+3*D(0, 1, n)+D000(n)+2*sigma(n, 0)+3*sigma(n)+sigma(n, 2))/6); \\ Seiichi Manyama, Jul 26 2024
A374951
a(n) = Sum_{i+j+k=n, i,j,k >= 1} sigma(i) * sigma(j) * sigma(k).
Original entry on oeis.org
0, 0, 1, 9, 39, 120, 300, 645, 1261, 2262, 3825, 6160, 9471, 14178, 20376, 28965, 39600, 54066, 71145, 94248, 120140, 155310, 193116, 244560, 297819, 370860, 443710, 544554, 641655, 778458, 904800, 1085445, 1248762, 1483308, 1688052, 1991515, 2244375, 2626380
Offset: 1
-
b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 3):
seq(a(n), n=1..55); # Alois P. Heinz, Jul 25 2024
-
b[n_, k_] := b[n, k] = If[k == 0, If[n == 0, 1, 0],
If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], Function[q,
Sum[b[j, q]*b[n - j, k - q], {j, 0, n}]][Quotient[k, 2]]]];
a[n_] := b[n, 3];
Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Mar 14 2025, after Alois P. Heinz *)
-
my(N=40, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, k*x^k/(1-x^k))^3))
-
from sympy import divisor_sigma
def A374951(n): return (60*sum(divisor_sigma(i)*divisor_sigma(n-i,3) for i in range(1,n))+divisor_sigma(n)*(9*n*(2*n-1)+1)-5*divisor_sigma(n,3)*(3*n-1))//144 # Chai Wah Wu, Jul 25 2024
A191832
Number of solutions to the Diophantine equation x1*x2 + x2*x3 + x3*x4 + x4*x5 + x5*x6 = n, with all xi >= 1.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 7, 10, 22, 29, 51, 61, 99, 115, 163, 192, 262, 287, 385, 428, 528, 600, 730, 780, 963, 1054, 1202, 1337, 1545, 1646, 1908, 2059, 2269, 2516, 2770, 2933, 3298, 3568, 3792, 4142, 4493, 4786, 5183, 5562, 5831, 6423, 6745, 7140, 7639, 8231, 8479, 9216, 9603, 10260, 10663, 11488, 11752, 12838, 13100, 13887
Offset: 1
-
with(numtheory);
D00:=n->add(tau(j)*tau(n-j),j=1..n-1);
D01:=n->add(tau(j)*sigma(n-j),j=1..n-1);
D000:=proc(n) local t1,i,j;
t1:=0;
for i from 1 to n-1 do
for j from 1 to n-1 do
if (i+j < n) then t1 := t1+numtheory:-tau(i)*numtheory:-tau(j)*numtheory:-tau(n-i-j); fi;
od; od;
t1;
end;
L5:=n->D000(n)/6+D00(n)+D01(n)/2+(2*n-1/6)*tau(n)-11*sigma[2](n)/6;
[seq(L5(n),n=1..60)];
# Alternate:
g:= proc(n,k,j) option remember;
if n < k-1 then 0
elif k = 2 then
if n mod j = 0 then 1 else 0 fi
else
add(procname(n-j*x,k-1,x), x=1 .. floor((n-k+2)/j))
fi
end proc:
f:= n -> add(g(n,6,j),j=1..n-4);
seq(f(n),n=1..100); # Robert Israel, Dec 02 2015
-
g[n_, k_, j_] := g[n, k, j] = If[n < k - 1, 0, If[k == 2, If[ Mod[n, j] == 0, 1, 0], Sum[g[n - j x, k - 1, x], {x, 1, Floor[(n - k + 2)/j]}]]];
f[n_] := Sum[g[n, 6, j], {j, 1, n - 4}];
Array[f, 100] (* Jean-François Alcover, Sep 25 2020, after Robert Israel *)
A320019
Coefficients of polynomials related to the number of divisors, triangle read by rows, T(n,k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 2, 4, 1, 0, 3, 8, 6, 1, 0, 2, 14, 18, 8, 1, 0, 4, 20, 41, 32, 10, 1, 0, 2, 28, 78, 92, 50, 12, 1, 0, 4, 37, 132, 216, 175, 72, 14, 1, 0, 3, 44, 209, 440, 490, 298, 98, 16, 1, 0, 4, 58, 306, 814, 1172, 972, 469, 128, 18, 1
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2, 1
[3] 0, 2, 4, 1
[4] 0, 3, 8, 6, 1
[5] 0, 2, 14, 18, 8, 1
[6] 0, 4, 20, 41, 32, 10, 1
[7] 0, 2, 28, 78, 92, 50, 12, 1
[8] 0, 4, 37, 132, 216, 175, 72, 14, 1
[9] 0, 3, 44, 209, 440, 490, 298, 98, 16, 1
-
P := proc(n, x) option remember; if n = 0 then 1 else
x*add(numtheory:-tau(n-k)*P(k,x), k=0..n-1) fi end:
Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
seq(lprint([n], Trow(n)), n=0..9);
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, numtheory[tau](n)), (q->
add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Feb 01 2021
# Uses function PMatrix from A357368.
PMatrix(10, NumberTheory:-tau); # Peter Luschny, Oct 19 2022
-
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
If[k == 1, If[n == 0, 0, DivisorSigma[0, n]],
With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)
A341374
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies: [Sum_{n>=0} x^n/(1 - x^(n+1))]^3 = Sum_{n>=0} a(n)*x^n/(1 - x^(n+1))^3.
Original entry on oeis.org
1, 3, 12, 22, 63, 57, 181, 174, 318, 302, 714, 444, 1177, 852, 1239, 1349, 2598, 1440, 3586, 2226, 3381, 3282, 6246, 3174, 6980, 5343, 7434, 6031, 12111, 5076, 14638, 9636, 12381, 11513, 16125, 9441, 24115, 15765, 19743, 14982, 32076, 13317, 36726, 21783, 25062
Offset: 0
A(x) = 1 + 3*x + 12*x^2 + 22*x^3 + 63*x^4 + 57*x^5 + 181*x^6 + 174*x^7 + 318*x^8 + 302*x^9 + 714*x^10 + 444*x^11 + 1177*x^12 + ...
such that
D(x)^3 = 1/(1-x)^3 + 3*x/(1-x^2)^3 + 12*x^2/(1-x^3)^3 + 22*x^3/(1-x^4)^3 + 63*x^4/(1-x^5)^3 + 57*x^5/(1-x^6)^3 + ... + a(n)*x^n/(1-x^(n+1))^3 + ...
and
D(x)^3 = A(x) + 3*x*A(x^2) + 6*x^2*A(x^3) + 10*x^3*A(x^4) + 15*x^4*A(x^5) + 21*x^5*A(x^6) + 28*x^6*A(x^7) + ... + (n+1)*(n+2)/2*x^n*A(x^(n+1)) + ...
where
D(x)^3 = 1 + 6*x + 18*x^2 + 41*x^3 + 78*x^4 + 132*x^5 + 209*x^6 + 306*x^7 + 435*x^8 + 591*x^9 + 780*x^10 + 1008*x^11 + ... + A191829(n+1)*x^n + ...
D(x) = 1 + 2*x + 2*x^2 + 3*x^3 + 2*x^4 + 4*x^5 + 2*x^6 + 4*x^7 + 3*x^8 + 4*x^9 + 2*x^10 + 6*x^11 + 2*x^12 + ... + A000005(n+1)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
A[#A] = polcoeff( sum(n=0,#A, x^n/(1 - x^(n+1) +x*O(x^#A)) )^3 - sum(n=0,#A-1,A[n+1]*x^n/(1 - x^(n+1) + x*O(x^#A))^3 ), #A-1) );A[n+1]}
for(n=0,100,print1(a(n),", "))
A350596
Coefficients of the expansion of Sum_{i,j,k>=1} x^(i*j*k)/((1-x^i)*(1-x^j)*(1-x^k)).
Original entry on oeis.org
1, 6, 15, 34, 54, 96, 130, 196, 255, 349, 417, 570, 652, 823, 954, 1180, 1299, 1602, 1732, 2089, 2280, 2659, 2820, 3375, 3541, 4078, 4321, 4963, 5139, 5970, 6115, 6982, 7233, 8116, 8325, 9544, 9634, 10780, 11040, 12385, 12465, 14091, 14071, 15730, 15976, 17596, 17580
Offset: 1
-
my(N=66, x='x+O('x^N)); Vec(sum(i=1, N, sum(j=1, N\i, sum(k=1, N\(i*j), x^(i*j*k)/((1-x^i)*(1-x^j)*(1-x^k))))))
Showing 1-6 of 6 results.
Comments