cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A007969 Rectangular numbers.

Original entry on oeis.org

2, 5, 6, 10, 12, 13, 14, 17, 18, 20, 21, 22, 26, 28, 29, 30, 33, 34, 37, 38, 39, 41, 42, 44, 45, 46, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 65, 66, 68, 69, 70, 72, 73, 74, 76, 77, 78, 82, 84, 85, 86, 89, 90, 92, 93, 94, 95, 97, 98, 101, 102, 105, 106, 108, 109
Offset: 1

Views

Author

Keywords

Comments

A191854(n) = A007966(a(n)); A191855(n) = A007967(a(n)). - Reinhard Zumkeller, Jun 18 2011
It seems that D(n) = 4*a(n) gives precisely those even discriminants D from 4*A000037 of indefinite binary quadratic forms that have only improper solutions of the Pell equation x^2 - D*y^2 = +4. Conjecture tested for n = 1..66. Alternatively, the conjecture is that this sequence gives the r values for the Pell equation X^2 + r Y^2 = +1 whenever Y is even. See A261249 and A261250. - Wolfdieter Lang, Sep 16 2015
The proof of these two versions of the conjecture is given in the W. Lang link. - Wolfdieter Lang, Sep 19 2015 (revised Oct 03 2015)

Examples

			From _Wolfdieter Lang_, Sep 18 2015: (Start)
a(1) = 5 = 5*1 and 5*1^2 - 1*2^2  = 1.
a(7) = 14 = 2*7 and 2*2^2 - 7*1^2 = 1. (End)
		

Crossrefs

Every number belongs to exactly one of A000290, A007969, A007970.
Cf. A191854 (B numbers), A191855 (C numbers).
Subsequence of A000037, A002144 is a subsequence.
A263006 (R numbers), A263007 (S numbers).

Programs

  • Haskell
    a007969 n = a007969_list !! (n-1)
    a007969_list = filter ((== 1) . a007968) [0..]
    -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_] := (red = Reduce[x>0 && y>0 && b*x^2 + 1 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]); f[128] = {}(* to speed up *); f[n_] := f[n] = If[IntegerQ[Sqrt[n]], {}, Do[c = n/b; If[(r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; Return[{b, c, x0, y0}]], {b, Divisors[n] // Most}]]; A007969 = Reap[Table[Print[n, " ", f[n]]; If[f[n] != {} && f[n] =!= Null, Sow[n]], {n, 1, 130}]][[2, 1]] (* Jean-François Alcover, Jun 26 2012, updated Sep 18 2015 *)

Formula

a(n) = A191854(n)*A191855(n); A007968(a(n)) = 1. - Reinhard Zumkeller, Jun 18 2011
a(n) is in the sequence if a(n) = C*B with integers B >= 1 and C >= 2, such that C*S^2 - B*R^2 = 1 has an integer solution (without loss of generality one may take S and R positive). See the Conway link. - Wolfdieter Lang, Sep 18 2015

A007967 Second factor in happy factorization of n.

Original entry on oeis.org

0, 1, 2, 3, 2, 5, 3, 1, 4, 3, 10, 11, 4, 13, 2, 5, 4, 17, 9, 19, 5, 7, 11, 1, 6, 5, 26, 27, 4, 29, 6, 1, 2, 3, 2, 7, 6, 37, 19, 13, 20, 41, 7, 43, 4, 9, 2, 1, 8, 7, 50, 51, 13, 53, 27, 5, 8, 19, 58, 59, 4, 61, 2, 9, 8, 65, 33, 67, 17, 3, 14, 1, 9, 73, 74, 3, 4, 11, 3, 1, 10, 9, 82, 83
Offset: 0

Views

Author

Keywords

Comments

a(n) = n / A007966(n);
a(A007969(n)) = A191855(n); a(A007970(n)) = A191857(n). - Reinhard Zumkeller, Jun 18 2011

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a007967 n = genericIndex a007967_list n
    a007967_list = map snd hCouples
    -- Pairs hCouples are defined in A007968.
    -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_,  d_] := (red = Reduce[x > 0 && y > 0 && b*x^2 + d == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, red[[1]], red]); f[n_] := f[n] =  If[IntegerQ[rn = Sqrt[n]], {0, rn, rn, rn, rn},  Catch[Do[b = bc[[1]]; c = bc[[2]]; If[c > 1 && (r0 = r[b, c, 1]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; Throw[{1, b, c, x0, y0}]]; If[b > 1 && (r0 = r[c, b, 1]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; Throw[{1, c, b, x0, y0}]]; If[(r0 = r[b, c, 2]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; If[OddQ[x0] && OddQ[y0], Throw[{2, b, c, x0, y0}]]]; If[(r0 = r[c, b, 2]) =!= False, rr = ToRules[r0]; x0 = x /. rr; y0 = y /. rr; If[OddQ[x0] && OddQ[y0], Throw[{2, c, b, x0, y0}]]];, {bc, Union[Sort[{#, n/#}] & /@ Divisors[n]]}]]];a[n_] := f[n][[3]]; A007967 = Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 90}] (* Jean-François Alcover, Sep 18 2015 *)

A191854 First factor in happy factorization of n-th rectangular number.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 7, 1, 2, 4, 3, 2, 1, 7, 1, 5, 11, 17, 1, 2, 3, 1, 6, 11, 5, 23, 1, 4, 1, 2, 11, 7, 3, 1, 15, 1, 31, 1, 2, 4, 23, 5, 8, 1, 1, 19, 7, 26, 1, 3, 1, 2, 1, 9, 23, 3, 47, 19, 1, 49, 1, 2, 5, 1, 27, 1, 10, 3, 7, 1, 2, 4, 9, 2, 1, 31, 1, 14, 3, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 18 2011

Keywords

Comments

a(n) = A007966(A007969(n)) = A007969(n) / A191855(n);
(a(n), A191855(n)) is a 1-happy couple;
notation: B in the Conway link.

Crossrefs

Programs

  • Haskell
    a191854 = a007966 . a007969  -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_] := (red = Reduce[x>0 && y>0 && b*x^2 + 1 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]); f[128] = {}(* to speed up *); f[n_] := f[n] = If[IntegerQ[Sqrt[n]], {}, Do[c = n/b; If[(r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; Return[{b, c, x0, y0}]], {b, Divisors[n] // Most}]]; A191854 = Reap[Table[Print[n, " ", f[n]]; If[f[n] != {} && f[n] =!= Null, Sow[f[n][[1]]]], {n, 1, 130}]][[2, 1]] (* Jean-François Alcover, Sep 18 2015 *)

Extensions

Wrong formula removed (thanks to Wolfdieter Lang, who pointed this out) by Reinhard Zumkeller, Oct 11 2015

A263007 Second member S0(n) of the smallest positive pair (R0(n), S0(n)) for the n-th 1-happy number couple (B(n), C(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 4, 13, 1, 2, 3, 1, 1, 1, 5, 1, 5, 3, 78, 1, 5, 25, 3, 3, 1, 2, 13, 2, 3805, 4, 1, 1, 1, 36, 3, 1, 125, 5, 85, 4, 3, 1, 1, 41, 11, 53, 1, 12, 14, 732, 2, 569, 5, 1, 1, 1, 389, 13, 851525, 1, 2, 2, 73, 3, 13, 5, 51
Offset: 1

Views

Author

Wolfdieter Lang, Oct 28 2015

Keywords

Comments

See A263007. C(n)*a(n)^2 - B(n)*A263007(n)^2 = +1, n >= 1, with the 1-happy couple (B(n), C(n)) = (A191854(n), A191855(n)).
In the Zumkeller link "Initial Happy Factorization Data" given in A191860 the a(n) = S0(n) numbers appear for the t = 1 rows in column w.

Examples

			n = 4: 1-happy number A007969(4) = 10 = 1*10 = A191854(4)*A191855(4). 10*a(4)^2 - 1*A263006(4)^2 = 10*1^2 - 1*3^2 = +1. This is the smallest positive solution for given (B, C) = (1, 10).
		

Crossrefs

Formula

A191855(n)*a(n)^2 - A191854(n)*A263006(n)^2 = +1, and A263006(n) with a(n) is the smallest positive solution for the given 1-happy couple (A191854(n), A191855(n)).

A263006 First member R0(n) of the smallest positive pair (R0(n), S0(n)) for the n-th 1-happy number couple (B(n), C(n)).

Original entry on oeis.org

1, 2, 1, 3, 1, 18, 1, 4, 2, 1, 3, 7, 5, 3, 70, 1, 1, 1, 6, 3, 2, 32, 1, 3, 4, 23, 7, 9, 182, 11, 2, 1, 5, 99, 1, 29718, 1, 8, 4, 2, 13, 5, 1, 1068, 43, 39, 5, 1, 9, 3, 378, 51, 500, 1, 5, 45, 151, 1, 5604, 1, 10, 5, 2, 4005, 5, 8890182, 1, 7, 3, 776, 16, 35, 6, 277
Offset: 1

Views

Author

Wolfdieter Lang, Oct 28 2015

Keywords

Comments

The 1-happy numbers B(n)*C(n) are given in A007969(n) (called rectangular numbers in the Conway paper). B(n) = A191854(n), C(n) = A191855(n). Here the corresponding smallest positive numbers satisfying C(n)*S0(n)^2 - B(n)*R0(n)^2 = +1, n >= 1, are given as R0(n) = a(n) and S0(n) = A263007(n).
For a proof of Conway's happy number factorization theorem see the W. Lang link under A007970.
In the W. Lang link given in A007969 the first C(n), B(n), S0(n), R0(n) numbers are given in the Table for d(n) = A007969(n), n >= 1.
In the Zumkeller link "Initial Happy Factorization Data" given in A191860 the a(n) = R0(n) numbers appear for the t = 1 rows in column v.

Examples

			n = 6: 1-happy number A007969(6) = 13 = 1*13 = A191854(6)*A191855(6). 13*A263007(6)^2 - 1*a(6)^2 = 13*5^2 - 1*18^2 = +1. This is the smallest positive solution for (B, C) = (1, 13).
		

Crossrefs

Formula

A191855(n)*A263007(n)^2 - A191854(n)*a(n)^2 = +1, and a(n) with A263007(n) is the smallest positive solution for the given 1-happy couple (A191854(n), A191855(n)).

A262324 Conway's triangle of "happy factorizations" (flattened).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 3, 2, 2, 1, 5, 2, 3, 7, 1, 2, 4, 3, 3, 1, 10, 1, 11, 3, 4, 1, 13, 7, 2, 3, 5, 4, 4, 1, 17, 2, 9, 1, 19, 4, 5, 3, 7, 2, 11, 23, 1, 4, 6, 5, 5, 1, 26, 1, 27, 7, 4, 1, 29, 5, 6, 31, 1, 16, 2, 11, 3, 17, 2, 5, 7, 6, 6, 1, 37, 2, 19, 3, 13, 2, 20, 1, 41, 6, 7, 1, 43, 11, 4, 5, 9, 23, 2, 47, 1, 6, 8, 7, 7
Offset: 0

Views

Author

Jean-François Alcover, Sep 18 2015

Keywords

Comments

Conway's triangle is listed by increasing couple products, with duplicate squares removed.

Examples

			Triangle begins:
{0,0},
{1,1},
{1,2},   {1,3},  {2,2},
{1,5},   {2,3},  {7,1},  {2,4}, {3,3},
{1,10}, {1,11},  {3,4}, {1,13}, {7,2},  {3,5},  {4,4},
{1,17},  {2,9}, {1,19},  {4,5}, {3,7}, {2,11}, {23,1}, {4,6}, {5,5},
...
The original triangle (adapted and truncated):
                           ...
                      5^2  ...
                 4^2  1*26 ...
            3^2  1*17 1*27 ...
        2^2 1*10 2*9  7*4  ...
    1^2 1*5 1*11 1*19 1*29 ...
0^2 1*2 2*3 3*4  4*5  5*6  ...
1^2 1*3 7*1 1*13 3*7  31*1 ...
    2^2 2*4 7*2  2*11 16*2 ...
        3^2 3*5  23*1 11*3 ...
            4^2  4*6  17*2 ...
                 5^2  5*7  ...
                      6^2  ...
                           ...
		

Crossrefs

Programs

  • Mathematica
    f[0] = {0, 0}; f[32] = {16, 2}(* to speed up *); f[n_] := Do[c = n/b; If[b == c, Return[{b, b}]]; r1 = Reduce[r >= 0 && s >= 0 && c > 1 && b*r^2 + 1 == c*s^2, {r, s}, Integers]; If[r1 =!= False, Return[{b, c}]]; r2 = Reduce[r >= 0 && s >= 0 && r == 2x + 1 && s == 2y + 1 && b*r^2 + 2 == c *s^2, {r, s, x, y}, Integers]; If[r2 =!= False, Return[{b, c}]], {b, Divisors[n]}]; Table[Print["f(", n, ") = ", fn = f[n]]; fn, {n, 0, 49}] // Flatten
Showing 1-6 of 6 results.