A191871 a(n) = numerator(n^2 / 2^n).
0, 1, 1, 9, 1, 25, 9, 49, 1, 81, 25, 121, 9, 169, 49, 225, 1, 289, 81, 361, 25, 441, 121, 529, 9, 625, 169, 729, 49, 841, 225, 961, 1, 1089, 289, 1225, 81, 1369, 361, 1521, 25, 1681, 441, 1849, 121, 2025, 529, 2209, 9, 2401, 625, 2601, 169, 2809, 729, 3025
Offset: 0
Links
Programs
-
GAP
List([0..60],n->NumeratorRat(n^2/2^n)); # Muniru A Asiru, Mar 31 2018
-
Maple
[seq(numer(n^2/2^n), n=0..60)]; # Muniru A Asiru, Mar 31 2018
-
Mathematica
a[n_] := Numerator[n^2/2^n]; Table[a[n], {n, 0, 200, 2}]
-
PARI
a(n)=(n>>valuation(n,2))^2 \\ Charles R Greathouse IV & M. F. Hasler, Jun 19 2011
-
Python
from _future_ import division def A191871(n): while not n % 2: n //= 2 return n**2 # Chai Wah Wu, Mar 25 2018
Formula
Recurrence: a(2n) = a(n), a(2n+1) = (2n+1)^2. - Ralf Stephan, Aug 26 2013
From Amiram Eldar, Nov 28 2022: (Start)
Multiplicative with a(2^e) = 1, and a(p^e) = p^(2*e) if p > 2.
Sum_{k=1..n} a(k) ~ (4/21) * n^3. (End)
Dirichlet g.f.: zeta(s-2)*(2^s-4)/(2^s-1). - Amiram Eldar, Jan 04 2023
Comments