cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191901 Number of compositions of odd natural numbers into 6 parts <= n.

Original entry on oeis.org

0, 32, 364, 2048, 7812, 23328, 58824, 131072, 265720, 500000, 885780, 1492992, 2413404, 3764768, 5695312, 8388608, 12068784, 17006112, 23522940, 32000000, 42883060, 56689952, 74017944, 95551488, 122070312, 154457888, 193710244, 240945152, 297411660, 364500000, 443751840
Offset: 0

Views

Author

Adi Dani, Jun 19 2011

Keywords

Examples

			a(1)=32 compositions of odd numbers into 6 parts <=1.
1:(0,0,0,0,0,1)-->6!/(5!1!)= 6
3:(0,0,0,1,1,1)-->6!/(3!3!)=20
5:(0,1,1,1,1,1)-->6!/(1!5!)= 6
-------------------------------------
                            32
		

Programs

  • Magma
    [((n + 1)^6 - (1 + (-1)^n)/2)/2 : n in [0..25]]; // Vincenzo Librandi, Jul 03 2011
  • Maple
    A191901:=n->((n + 1)^6 - (1 + (-1)^n)/2)/2: seq(A191901(n), n=0..50); # Wesley Ivan Hurt, Apr 10 2017
  • Mathematica
    Table[Floor[1/2*((n + 1)^6 - (1 + (-1)^n)/2)], {n, 0, 30}]
    LinearRecurrence[{6,-14,14,0,-14,14,-6,1},{0,32,364,2048,7812,23328,58824,131072},40] (* Harvey P. Dale, Apr 12 2015 *)

Formula

a(n) = ((n + 1)^6 - (1 + (-1)^n)/2)/2.
G.f. -4*x*(8+43*x+78*x^2+43*x^3+8*x^4) / ( (1+x)*(x-1)^7 ). - R. J. Mathar, Jun 26 2011
a(0)=0, a(1)=32, a(2)=364, a(3)=2048, a(4)=7812, a(5)=23328, a(6)=58824, a(7)=131072, a(n)=6*a(n-1)-14*a(n-2)+14*a(n-3)-14*a(n-5)+ 14*a(n-6)- 6*a(n-7)+a(n-8). - Harvey P. Dale, Apr 12 2015