cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A141209 E.g.f. satisfies A(x)^A(x) = 1/(1 - x*A(x)).

Original entry on oeis.org

1, 1, 2, 9, 64, 620, 7626, 113792, 1997192, 40316544, 920271840, 23438308872, 658947505272, 20270099889624, 677226678369528, 24420959694718680, 945370712175873216, 39103903755819561984, 1721215383181421110848, 80329148928437231089152
Offset: 0

Views

Author

Paul D. Hanna, Jul 01 2008

Keywords

Comments

Generally, if e.g.f. A(x) satisfies A(x)^A(x) = 1/(1-x*A(x)^p), then a(n) ~ s*sqrt((s^s-1)/(p*(s^s-1)*(p*s^s-1)-s)) * n^(n-1) * (s^(p+s)/(s^s-1))^n / exp(n), where s is the root of the equation (1+log(s))*s = (s^s-1)*p. - Vaclav Kotesovec, Dec 28 2013

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 620*x^5/5! +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n-k+1)^(k-1)*Abs[StirlingS1[n,k]], {k, 0, n}], {n, 0, 20}]  (* Vaclav Kotesovec, Sep 17 2013 *)
    E^((2*r-1)/(1-r))*(1+(1-r)*E^(r/(r-1)))/.FindRoot[E^(r/(1-r))==(r-1)/r*(r+LambertW[-1,-r*E^(-r)]), {r,1/2}, WorkingPrecision->50] (* program for numerical value of the limit n->infinity a(n)^(1/n)/n, Vaclav Kotesovec, Sep 17 2013 *)
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=exp(-log(1-x*(A+O(x^n)))/A));n!*polcoeff(A,n)}
    
  • PARI
    {a(n,m=1)=sum(k=0,n,m*(n-k+m)^(k-1)*polcoeff(prod(j=1,n-1,1+j*x),n-k))} \\ Paul D. Hanna, Jul 08 2009
    
  • PARI
    {a(n,m=1)=n!*sum(k=0,n,m*(n-k+m)^(k-1)*polcoeff((-log(1-x+x*O(x^n))/x)^k/k!,n-k))} \\ Paul D. Hanna, Jul 08 2009
    
  • PARI
    {a(n,m=1)=sum(k=0,n,m*(n-k+m)^(k-1)*(-1)^(n-k)*stirling(n,k,1))} \\ Paul D. Hanna, Jul 08 2009

Formula

From Paul D. Hanna, Jul 08 2009: (Start)
(1) a(n) = Sum_{k=0..n} (n-k+1)^(k-1) *(-1)^(n-k) *Stirling1(n,k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
(2) a(n,m) = Sum_{k=0..n} m*(n-k+m)^(k-1) *(-1)^(n-k) *Stirling1(n,k) ;
which is equivalent to the following:
(3) a(n,m) = Sum_{k=0..n} m*(n-k+m)^(k-1) * {[x^(n-k)] Product_{j=1..n-1} (1+j*x)};
(4) a(n,m) = n!*Sum_{k=0..n} m*(n-k+m)^(k-1) * {[x^(n-k)] (-log(1-x)/x)^k/k!}.
(End)
Limit_{n->oo} a(n)^(1/n)/n = exp((2*r-1)/(1-r))*(1+(1-r)*exp(r/(r-1))) = 0.97848198198076..., where r = 0.42324001455512542... is the root of the equation exp(r/(1-r)) = (r-1)/r*(r + LambertW(-1,-r*exp(-r))). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ s*sqrt((s^s-1)/((s^s-1)^2-s)) * n^(n-1) * (s^(1+s)/(s^s-1))^n / exp(n), where s = 2.083029805648017585241865819... is the root of the equation (1+log(s))*s = (s^s-1). - Vaclav Kotesovec, Dec 28 2013

A188634 E.g.f.: Sum_{n>=0} (1 - exp(-(n+1)*x))^n/(n+1).

Original entry on oeis.org

1, 1, 4, 46, 1066, 41506, 2441314, 202229266, 22447207906, 3216941445106, 578333776748674, 127464417117501586, 33800841048945424546, 10617398393395844992306, 3898852051843774954576834, 1654948033478889053351543506, 804119629083230641164978005986
Offset: 0

Views

Author

Paul D. Hanna, Dec 28 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 46*x^3/3! + 1066*x^4/4! + 41506*x^5/5! +...
where
A(x) = 1 + (1-exp(-2*x))/2 + (1-exp(-3*x))^2/3 + (1-exp(-4*x))^3/4 + (1-exp(-5*x))^4/5 + (1-exp(-6*x))^5/6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(k+n)*(k+1)^(n-1)*k!*StirlingS2[n, k],{k,0,n}],{n,0,20}]
    Table[n!*SeriesCoefficient[Sum[(1-E^(-x*(k+1)))^k/(k+1),{k,0,n}],{x,0,n}],{n,0,20}]  (* Vaclav Kotesovec, Dec 30 2012 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, (1-exp(-(k+1)*x+x*O(x^n)))^k/(k+1)), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(j=0,n, (j+1)^(n-1)*sum(i=0,j, (-1)^(n+j-i)*binomial(j,i)*(j-i)^n))}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = Sum_{j=0..n} (j+1)^(n-1) * Sum_{i=0..j} (-1)^(n+j-i)*C(j, i)*(j-i)^n.
Ignoring the initial term, equals a diagonal of array A099594, which forms the poly-Bernoulli numbers B(-k,n).
Limit n->infinity a(n)^(1/n)/n^2 = 0.281682... - Vaclav Kotesovec, Dec 30 2012
a(n) = A266695(2*n-1) for n >= 1. - Alois P. Heinz, Apr 17 2024
Showing 1-2 of 2 results.