cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A191966 Number of n X n symmetric (0,1) matrices that achieve the record mentioned in A191965.

Original entry on oeis.org

1, 1, 1, 12, 15, 900, 6615, 90720, 1995840, 1360800, 197920800, 359251200, 1297296000, 7264857600, 119870150400, 2615348736000, 29640619008000, 533531142144000, 101370917007360000, 101370917007360000, 425757851430912000, 3325168819675422720000
Offset: 1

Views

Author

R. H. Hardin and N. J. A. Sloane, Jun 18 2011

Keywords

Comments

Number of labeled squarefree graphs on n nodes with A006855(n) edges. - Max Alekseyev, Jan 29 2022

Crossrefs

Labeled version of A335820. Rightmost values in A352472.

Programs

  • Sage
    a191966 = lambda n: sum( factorial(n) // g.automorphism_group(return_group=False, order=True) for g in graphs.nauty_geng(options=f'-c -f {n} {oeis(6855)(n)}:0') ) # Max Alekseyev, Jan 29 2022

Extensions

a(11)-a(21) from Max Alekseyev, Jan 29 2022
Corrected and extended to a(37) by Max Alekseyev, Mar 12 2023

A191873 A problem of Zarankiewicz: maximal number of 1's in an n X n matrix of 0's and 1's with 0's on the main diagonal and no "rectangle" with 1's at the four corners.

Original entry on oeis.org

0, 2, 6, 9, 12, 16, 21, 24, 29, 34, 39, 45
Offset: 1

Views

Author

R. H. Hardin and N. J. A. Sloane, Jun 18 2011

Keywords

Comments

In other words, the pattern
1...1
.....
1...1
is forbidden.
From Don Knuth, Aug 13 2014: (Start)
Well, it is well known from A001197 that a(8)<25. A001197 is essentially the same problem, but increased by 1, and without restricting the diagonals. The diagonal restriction is however of little interest, because it's easy to permute rows and columns and get all 0's or all 1's or probably any of the 2^n possible settings of the diagonal. At least, this is true when n=8; hence a(8) in this sequence is 24.
Transposing cols 1<->4 and 5<->8 in the example by Guy 1967 page 130 as cited in A001197 gives a(8)=24:
01110000
10010100
00010011
01000101
10100010
11001000
00101001
00001110
But as stated above, I think this is quite trivial, and I believe this sequence should be downplayed. Readers should look at the sequence A001197 --- that's what Zarankiewicz's problem asked for in 1951, namely the min number that forces a rectangle, not the max number that doesn't exclude it. (End)
Conjecture: for n >= 3, a(n) = A072567(n) = A001197(n) - 1 (per above comment). - Max Alekseyev, Jan 29 2022

References

  • B. Bollobas, Extremal Graph Theory, pp. 309ff.

Crossrefs

Extensions

a(8) confirmed, a(9)-a(12) added by Max Alekseyev, Feb 07 2022

A006855 Maximum number of edges in an n-node squarefree graph, or, in a graph containing no 4-cycle, or no C_4.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 9, 11, 13, 16, 18, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 52, 56, 59, 63, 67, 71, 76, 80, 85, 90, 92, 96, 102, 106, 110, 113, 117, 122, 127
Offset: 1

Views

Author

Keywords

Comments

Keywords to help find this entry: C4-free. C_4-free, no 4-cycle, squarefree, quadrilateral-free, Zarankiewicz problem.
Lower bounds that have a good chance of being exact: a(41) >= 132, a(42) >= 137, a(43) >= 142, a(44) >= 148, a(45) >= 154, a(46) >= 157, a(47) >= 163, a(48) >= 168, a(49) >= 174. - Brendan McKay, Mar 08 2022
Upper bounds: a(41) <= 133, a(42) <= 139, a(43) <= 145, a(44) <= 151, a(45) <= 158, a(46) <= 165, a(47) <= 171, a(48) <= 176, a(49) <= 182. - Max Alekseyev, Jan 26 2023

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999. Chap. 20 gives a simple proof of the upper bound (n/4)(sqrt(4n-3)+1) and of the fact that it is asymptotically tight. - Christopher E. Thompson, Aug 14 2001
  • P. Kovari, V. T. Sos, and P. Turan. On a problem of K. Zarankiewicz, Colloq. Math. (4th ed.), 3 (1954), pp. 50-57.
  • Brendan McKay, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A335820 for the number of graphs that achieve a(n).

Formula

a(n) <= n^(3/2)*(1/2 + o(1)) [Kovari, Sos, Turan]. But the upper bound mentioned in the Aigner-Ziegler reference (see above) is stronger. - N. J. A. Sloane, Mar 07 2022
a(n) = A191965(n)/2. - Max Alekseyev, Apr 02 2022
For n > 2, a(n) <= floor(a(n-1) * n / (n-2)). - Max Alekseyev, Jan 26 2023

Extensions

a(23)-a(31) from Michel Marcus, Jul 23 2014
a(32)-a(39) from Brendan McKay, Mar 08 2022
a(40) from Brendan McKay, communicated by Max Alekseyev, Mar 13 2023

A006620 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X (n+1) {0,1}-matrix with k ones contains an all-ones 2 X 2 submatrix.

Original entry on oeis.org

5, 8, 11, 15, 19, 23, 27, 32, 37, 43, 49, 54, 59, 64
Offset: 2

Views

Author

Keywords

Comments

a(n) <= A205805(2*n+1) + 1. - Max Alekseyev, Feb 02 2024

References

  • R. K. Guy, A many-facetted problem of Zarankiewicz, Lect. Notes Math. 110 (1969), 129-148.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name changed at the suggestion of Sean A. Irvine by Max Alekseyev, Feb 02 2024

A006614 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X n {0,1}-matrix with k ones contains an all-ones 2 X 4 submatrix.

Original entry on oeis.org

14, 21, 26, 32, 41, 48, 56, 67
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name updated at the suggestion of Sean A. Irvine by Max Alekseyev, Feb 02 2024

A006615 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X n {0,1}-matrix with k ones contains an all-ones 3 X 4 submatrix.

Original entry on oeis.org

15, 22, 31, 38, 46, 57
Offset: 4

Views

Author

Keywords

References

  • R. K. Guy, A many-facetted problem of Zarankiewicz, Lect. Notes Math. 110 (1969), 129-148.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name changed at the suggestion of Sean A. Irvine and a(9) added by Max Alekseyev, Feb 02 2024

A006622 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X (n+1) {0,1}-matrix with k ones contains an all-ones 3 X 4 submatrix.

Original entry on oeis.org

12, 18, 26, 33, 41, 51
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name edited at the suggestion of Sean A. Irvine and a(8) added by Max Alekseyev, Feb 02 2024

A006625 A variant of Zarankiewicz's problem: a(n) is the least k such that every n X (n+2) {0,1}-matrix with k ones contains an all-ones 3 X 4 submatrix.

Original entry on oeis.org

14, 21, 28, 36, 45, 55
Offset: 3

Views

Author

Keywords

References

  • R. K. Guy, A many-facetted problem of Zarankiewicz, Lect. Notes Math. 110 (1969), 129-148.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name changed at the suggestion of Sean A. Irvine and a(8) added by Max Alekseyev, Feb 02 2024
Showing 1-8 of 8 results.