cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191993 a(n) = 3^(n-1) + C(2*n, n)/2.

Original entry on oeis.org

2, 6, 19, 62, 207, 705, 2445, 8622, 30871, 112061, 411765, 1529225, 5731741, 21652623, 82341729, 314889102, 1209849831, 4666707813, 18060052389, 70085525877, 272615721621, 1062509835063, 4148096423409, 16217945020377, 63487732755357, 248806555083495
Offset: 1

Views

Author

Mircea Merca, Jun 21 2011

Keywords

Examples

			a(5) = 3^4 + C(10,5)/2 = 81 + 126 = 207.
		

Crossrefs

Programs

  • Maple
    seq(3^(n-1)+binomial(2*n-1,n),n=1..20)
  • Mathematica
    Table[3^(n-1)+Binomial[2n,n]/2,{n,30}] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    a(n)=3^(n-1)+binomial(n+n,n)/2 \\ Charles R Greathouse IV, Jun 21 2011

Formula

a(n) = A000244(n-1) + A001700(n-1).
a(n) = Sum_{k=0..floor(n/3)} (-1)^k*C(2*n, n-3*k).
G.f.: ((x-1)*(4*x-1) + sqrt((1-4*x)*(3*x-1)^2))/(2*(4*x-1)*(3*x-1)) - 1.
Conjecture: n*(n-3)*a(n) - (7*n^2 -23*n +12)*a(n-1) +6*(2*n-3)*(n-2)*a(n-2)=0. - R. J. Mathar, Oct 18 2017
E.g.f.: (exp(2*x)*(2*exp(x) + 3*BesselI(0,2*x)) - 5)/6. - Stefano Spezia, Aug 22 2025