cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192013 a(n) = Sum_{d|n} Kronecker(-6, d).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 0, 2, 2, 1, 0, 1, 0, 2, 2, 2, 0, 1, 3, 0, 1, 2, 2, 2, 2, 1, 2, 0, 4, 1, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 0, 1, 3, 3, 0, 0, 2, 1, 4, 2, 0, 2, 2, 2, 0, 2, 2, 1, 0, 2, 0, 0, 0, 4, 0, 1, 2, 0, 3, 0, 4, 0, 2, 2, 1, 0, 2, 2, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 1, 2, 3, 2, 3, 2, 0, 2, 0, 4
Offset: 1

Views

Author

Michael Somos, Jun 22 2011

Keywords

Examples

			G.f. = x + x^2 + x^3 + x^4 + 2*x^5 + x^6 + 2*x^7 + x^8 + x^9 + 2*x^10 + ...
		

Crossrefs

Cf. A109017(n) = Kronecker(-6, n). - Michael Somos, Jul 22 2015

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -6, d], { d, Divisors[n]}]];
  • PARI
    {a(n) = sumdiv( n, d, kronecker( -6, d))};
    
  • PARI
    a(n)=sumdivmult(n, d, kronecker(-6, d)) \\ Charles R Greathouse IV, Dec 14 2016

Formula

Moebius transform is period 24 sequence [ 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1, 5, 7, 11 (mod 24), a(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
G.f.: Sum_{k>0} x^k * (1 + x^(4*k)) * (1 + x^(6*k)) / (1 + x^(12*k)).
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker(-6, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker(-6, p) * p^-s)).
a(n) = A000377(n) = A000377(2*n) = A190611(2*n). a(n) = a(2*n) = a(3*n). - Michael Somos, Jul 22 2015
0 <= a(n) <= d(n) and these bounds are sharp. - Charles R Greathouse IV, Dec 14 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(6) = 1.282549... . - Amiram Eldar, Oct 17 2022