cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192066 Sum of the odd unitary divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 10, 6, 12, 4, 14, 8, 24, 1, 18, 10, 20, 6, 32, 12, 24, 4, 26, 14, 28, 8, 30, 24, 32, 1, 48, 18, 48, 10, 38, 20, 56, 6, 42, 32, 44, 12, 60, 24, 48, 4, 50, 26, 72, 14, 54, 28, 72, 8, 80, 30, 60, 24, 62, 32, 80, 1, 84, 48, 68, 18, 96, 48, 72, 10, 74, 38, 104, 20, 96, 56, 80, 6
Offset: 1

Views

Author

R. J. Mathar, Jun 22 2011

Keywords

Comments

The unitary analog of A000593.

Examples

			n=9 has the divisors 1, 3 and 9, of which 3 is not a unitary divisor because gcd(3,9/3) = gcd(3,3) != 1. This leaves 1 and 9 as unitary divisors which sum to a(9) = 1+9 = 10.
		

Crossrefs

Programs

  • Haskell
    a192066 = sum . filter odd . a077610_row
    -- Reinhard Zumkeller, Feb 12 2012
    
  • Maple
    unitaryOddSigma := proc(n,k) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if type(d,'odd') then if igcd(d,n/d) = 1 then a := a+d^k ; end if; end if; end do: a ; end proc:
    A := proc(n) unitaryOddSigma(n,1) ;end proc:
  • Mathematica
    a[n_] := DivisorSum[n, Boole[OddQ[#] && GCD[#, n/#] == 1]*#&];
    Array[a, 80] (* Jean-François Alcover, Nov 16 2017 *)
    f[2, p_] := 1; f[p_, e_] := p^e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2020 *)
  • PARI
    a(n) = sumdiv(n, d, if ((gcd(d, n/d)==1) && (d%2), d)); \\ Michel Marcus, Nov 17 2017

Formula

a(n) = Sum_{d|n, d odd, gcd(d,n/d)=1} d.
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s))/( zeta(2s-1)*(1-2^(1-2s)) ).
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (21*zeta(3)). - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(2^e) = 1, and a(p^e) = p^e + 1 for p > 2. - Amiram Eldar, Sep 18 2020