cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369126 Expansion of (1/x) * Series_Reversion( x / ((1+x)^4+x^4) ).

Original entry on oeis.org

1, 4, 22, 140, 970, 7104, 54096, 424008, 3398224, 27721024, 229410328, 1921308272, 16253502512, 138683973120, 1192142838656, 10314377770720, 89749921081280, 784913791336192, 6895599255571840, 60825440855493376, 538507243041624864, 4783482648574893056
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^4+x^4))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(4*n-4*k+4, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+1,k) * binomial(4*n-4*k+4,n-4*k).
D-finite with recurrence -3*(3*n+2)*(3*n+4)*(1746*n-6043)*(n+1)*a(n) +4*(519282*n^4 -1632448*n^3 +319539*n^2 +77803*n-72516)*a(n-1) +16*(-1055610*n^4 +5245655*n^3 -8423433*n^2 +5306215*n-1129842)*a(n-2) +96*(n-2) *(150552*n^3 -673240*n^2 +868987*n -301954)*a(n-3) -64*(n-2) *(n-3) *(174726*n^2 -528221*n +220460)*a(n-4) -512*(7353*n-3733)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 24 2024

A369128 Expansion of (1/x) * Series_Reversion( x / ((1+x)^5+x^5) ).

Original entry on oeis.org

1, 5, 35, 285, 2530, 23752, 231910, 2331040, 23960235, 250692365, 2661086895, 28587333725, 310217791590, 3395464391870, 37442295427120, 415570885425280, 4638842010800025, 52044582325415025, 586553425250933055, 6637525235622842585, 75387741117556006435
Offset: 0

Views

Author

Seiichi Manyama, Jan 14 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^5+x^5))/x)
    
  • PARI
    a(n) = sum(k=0, n\5, binomial(n+1, k)*binomial(5*n-5*k+5, n-5*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} binomial(n+1,k) * binomial(5*n-5*k+5,n-5*k).

A369212 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2+x^3) ).

Original entry on oeis.org

1, 2, 5, 15, 50, 177, 652, 2473, 9594, 37892, 151846, 615859, 2523217, 10427471, 43415259, 181941198, 766841846, 3248517320, 13823977350, 59067577266, 253315964424, 1089998388418, 4704475230340, 20361365646315, 88351705071583, 384280788724692, 1675063399090659
Offset: 0

Views

Author

Seiichi Manyama, Jan 16 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2+x^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n+1, k)*binomial(2*n-2*k+2, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(2*n-2*k+2,n-3*k).

A370287 Coefficient of x^n in the expansion of ( (1+x)^3 + x^3 )^n.

Original entry on oeis.org

1, 3, 15, 87, 531, 3333, 21309, 138015, 902547, 5946153, 39406005, 262404585, 1754316045, 11767931451, 79165530375, 533883963567, 3608242091091, 24432635451465, 165721028062605, 1125743155558677, 7657535953619721, 52151890274636463, 355576809975214095
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n, k)*binomial(3*n-3*k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n,k) * binomial(3*n-3*k,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^3 + x^3) ).
Showing 1-4 of 4 results.