cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192205 a(n) = sum of absolute values of coefficients in (1-x-x^2+x^3)^n.

Original entry on oeis.org

1, 4, 12, 36, 116, 344, 1104, 3280, 10456, 31152, 98804, 295988, 935876, 2811540, 8870324, 26695724, 84060148, 253376840, 796635360, 2404558304, 7549431884, 22820942416, 71541295984, 216562743948, 677938097756, 2054922521644
Offset: 0

Views

Author

Paul D. Hanna, Jun 25 2011

Keywords

Comments

Conjecture: limit a(n)^(1/n) = 16*sqrt(3)/9 = 3.079201..., which is substantiated by the observation that the sums of the coefficients squared in (1-x-x^2+x^3)^n equals binomial(4n,n) (cf. A005810).

Examples

			The triangle A227964 of coefficients in (1+x-x^2-x^3)^n begins:
n=0: [1];
n=1: [1, -1, -1, 1];
n=2: [1, -2, -1, 4, -1, -2, 1];
n=3: [1, -3, 0, 8, -6, -6, 8, 0, -3, 1];
n=4: [1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1];
n=5: [1, -5, 5, 15, -35, -1, 65, -45, -45, 65, -1, -35, 15, 5, -5, 1];
n=6: [1, -6, 9, 16, -60, 24, 116, -144, -66, 220, -66, -144, 116, 24, -60, 16, 9, -6, 1]; ...
This sequence gives the sums of the absolute values of the coefficients for n>=0.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Abs[CoefficientList[Expand[(1-x-x^2+x^3)^n],x]]],{n,0,30}] (* Harvey P. Dale, Mar 03 2013 *)
  • PARI
    {a(n)=sum(k=0,3*n,abs(polcoeff((1-x-x^2+x^3)^n,k)))}
    for(n=0,30,print1(a(n),", "))