A192205 a(n) = sum of absolute values of coefficients in (1-x-x^2+x^3)^n.
1, 4, 12, 36, 116, 344, 1104, 3280, 10456, 31152, 98804, 295988, 935876, 2811540, 8870324, 26695724, 84060148, 253376840, 796635360, 2404558304, 7549431884, 22820942416, 71541295984, 216562743948, 677938097756, 2054922521644
Offset: 0
Keywords
Examples
The triangle A227964 of coefficients in (1+x-x^2-x^3)^n begins: n=0: [1]; n=1: [1, -1, -1, 1]; n=2: [1, -2, -1, 4, -1, -2, 1]; n=3: [1, -3, 0, 8, -6, -6, 8, 0, -3, 1]; n=4: [1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1]; n=5: [1, -5, 5, 15, -35, -1, 65, -45, -45, 65, -1, -35, 15, 5, -5, 1]; n=6: [1, -6, 9, 16, -60, 24, 116, -144, -66, 220, -66, -144, 116, 24, -60, 16, 9, -6, 1]; ... This sequence gives the sums of the absolute values of the coefficients for n>=0.
Crossrefs
Programs
-
Mathematica
Table[Total[Abs[CoefficientList[Expand[(1-x-x^2+x^3)^n],x]]],{n,0,30}] (* Harvey P. Dale, Mar 03 2013 *)
-
PARI
{a(n)=sum(k=0,3*n,abs(polcoeff((1-x-x^2+x^3)^n,k)))} for(n=0,30,print1(a(n),", "))
Comments