A192507 Number of conjugacy classes of primitive elements in GF(3^n) which have trace 0.
0, 0, 1, 2, 7, 14, 52, 104, 333, 870, 2571, 4590, 20440, 56736, 133782, 327558, 1265391, 2612694, 10188836, 20769420, 76562106
Offset: 1
Crossrefs
Programs
-
GAP
p := 3; a := function(n) local q, k, cnt, x; q:=p^n; k:=GF(p, n); cnt:=0; for x in k do if Trace(k, GF(p), x)=0*Z(p) and Order(x)=q-1 then cnt := cnt+1; fi; od; return cnt/n; end; for n in [1..16] do Print (a(n), ", "); od;
-
Sage
# much more efficient p=3; # choose characteristic for n in range(1,66): F = GF(p^n, 'x') g = F.multiplicative_generator() # generator vt = vector(ZZ,p) # stats: trace m = p^n - 1 # size of multiplicative group # Compute all irreducible polynomials via Lyndon words: for w in LyndonWords(p,n): # digits of Lyndon words range form 1,..,p e = sum( (w[j]-1) * p^j for j in range(0,n) ) if gcd(m, e) == 1: # primitive elements only f = g^e t = f.trace().lift(); # trace (over ZZ) vt[t] += 1 print(vt[0]) # choose index 0,1,..,p-1 for different traces # Joerg Arndt, Oct 03 2012
Formula
a(n) = A192212(n) / n.
Extensions
Added terms >=2571, Joerg Arndt, Oct 03 2012
a(18)-a(21) from Robin Visser, Apr 26 2024
Comments