A192223 a(n) = Lucas(2^n + 1).
3, 4, 11, 76, 3571, 7881196, 38388099893011, 910763447271179530132922476, 512653048485188394162163283930413917147479973138989971
Offset: 0
Examples
Pierce series expansion of Phi^(2^n + 2) to the base Phi for n = 1 to 4: n = 1: Phi^4 = Phi/4 - Phi^2/(4*11) + Phi^3/(4*11*76) - Phi^4/(4*11*76*3571) + ... n = 2: Phi^6 = Phi/11 - Phi^2/(11*76) + Phi^3/(11*76*3571) - ... n = 3: Phi^10 = Phi/76 - Phi^2/(76*3571) + Phi^3/(76*3571*7881196) - ... n = 4: Phi^18 = Phi/3571 - Phi^2/(3571*7881196) + ...
Links
- J. Sondow, Evaluation of Tachiya's algebraic infinite products involving Fibonacci and Lucas numbers, Diophantine Analysis and Related Fields 2011 - AIP Conference Proceedings, vol. 1385, pp. 97-100.
- Y. Tachiya, Transcendence of certain infinite products, J. Number Theory 125 (2007), 182-200.
- Eric Weisstein's World of Mathematics, Pierce Expansion
Crossrefs
Programs
-
Mathematica
Table[LucasL[2^n + 1], {n, 0, 10}] (* T. D. Noe, Jan 11 2012 *)
Formula
a(n) = A000032(2^n + 1).
From Peter Bala, Oct 28 2013: (Start)
a(n) = phi^(2^n + 1) - (1/phi)^(2^n + 1), where phi = 1/2*(1 + sqrt(5)) denotes the golden ratio A001622.
Recurrence equation: a(0) = 3, a(1) = 4 and a(n) = floor(1/phi*a(n-1)^2) + 2 for n >= 2. (End)
Comments