cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001622 Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2.

Original entry on oeis.org

1, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8, 4, 7, 5
Offset: 1

Views

Author

Keywords

Comments

Also decimal expansion of the positive root of (x+1)^n - x^(2n). (x+1)^n - x^(2n) = 0 has only two real roots x1 = -(sqrt(5)-1)/2 and x2 = (sqrt(5)+1)/2 for all n > 0. - Cino Hilliard, May 27 2004
The golden ratio phi is the most irrational among irrational numbers; its successive continued fraction convergents F(n+1)/F(n) are the slowest to approximate to its actual value (I. Stewart, in "Nature's Numbers", Basic Books, 1997). - Lekraj Beedassy, Jan 21 2005
Let t=golden ratio. The lesser sqrt(5)-contraction rectangle has shape t-1, and the greater sqrt(5)-contraction rectangle has shape t. For definitions of shape and contraction rectangles, see A188739. - Clark Kimberling, Apr 16 2011
The golden ratio (often denoted by phi or tau) is the shape (i.e., length/width) of the golden rectangle, which has the special property that removal of a square from one end leaves a rectangle of the same shape as the original rectangle. Analogously, removals of certain isosceles triangles characterize side-golden and angle-golden triangles. Repeated removals in these configurations result in infinite partitions of golden rectangles and triangles into squares or isosceles triangles so as to match the continued fraction, [1,1,1,1,1,...] of tau. For the special shape of rectangle which partitions into golden rectangles so as to match the continued fraction [tau, tau, tau, ...], see A188635. For other rectangular shapes which depend on tau, see A189970, A190177, A190179, A180182. For triangular shapes which depend on tau, see A152149 and A188594; for tetrahedral, see A178988. - Clark Kimberling, May 06 2011
Given a pentagon ABCDE, 1/(phi)^2 <= (A*C^2 + C*E^2 + E*B^2 + B*D^2 + D*A^2) / (A*B^2 + B*C^2 + C*D^2 + D*E^2 + E*A^2) <= (phi)^2. - Seiichi Kirikami, Aug 18 2011
If a triangle has sides whose lengths form a geometric progression in the ratio of 1:r:r^2 then the triangle inequality condition requires that r be in the range 1/phi < r < phi. - Frank M Jackson, Oct 12 2011
The graphs of x-y=1 and x*y=1 meet at (tau,1/tau). - Clark Kimberling, Oct 19 2011
Also decimal expansion of the first root of x^sqrt(x+1) = sqrt(x+1)^x. - Michel Lagneau, Dec 02 2011
Also decimal expansion of the root of (1/x)^(1/sqrt(x+1)) = (1/sqrt(x+1))^(1/x). - Michel Lagneau, Apr 17 2012
This is the case n=5 of (Gamma(1/n)/Gamma(3/n))*(Gamma((n-1)/n)/Gamma((n-3)/n)): (1+sqrt(5))/2 = (Gamma(1/5)/Gamma(3/5))*(Gamma(4/5)/Gamma(2/5)). - Bruno Berselli, Dec 14 2012
Also decimal expansion of the only number x>1 such that (x^x)^(x^x) = (x^(x^x))^x = x^((x^x)^x). - Jaroslav Krizek, Feb 01 2014
For n >= 1, round(phi^prime(n)) == 1 (mod prime(n)) and, for n >= 3, round(phi^prime(n)) == 1 (mod 2*prime(n)). - Vladimir Shevelev, Mar 21 2014
The continuous radical sqrt(1+sqrt(1+sqrt(1+...))) tends to phi. - Giovanni Zedda, Jun 22 2019
Equals sqrt(2+sqrt(2-sqrt(2+sqrt(2-...)))). - Diego Rattaggi, Apr 17 2021
Given any complex p such that real(p) > -1, phi is the only real solution of the equation z^p+z^(p+1)=z^(p+2), and the only attractor of the complex mapping z->M(z,p), where M(z,p)=(z^p+z^(p+1))^(1/(p+2)), convergent from any complex plane point. - Stanislav Sykora, Oct 14 2021
The only positive number such that its decimal part, its integral part and the number itself (x-[x], [x] and x) form a geometric progression is phi, with respectively (phi -1, 1, phi) and a ratio = phi. This is the answer to the 4th problem of the 7th Canadian Mathematical Olympiad in 1975 (see IMO link and Doob reference). - Bernard Schott, Dec 08 2021
The golden ratio is the unique number x such that f(n*x)*c(n/x) - f(n/x)*c(n*x) = n for all n >= 1, where f = floor and c = ceiling. - Clark Kimberling, Jan 04 2022
In The Second Scientific American Book Of Mathematical Puzzles and Diversions, Martin Gardner wrote that, by 1910, Mark Barr (1871-1950) gave phi as a symbol for the golden ratio. - Bernard Schott, May 01 2022
Phi is the length of the equal legs of an isosceles triangle with side c = phi^2, and internal angles (A,B) = 36 degrees, C = 108 degrees. - Gary W. Adamson, Jun 20 2022
The positive solution to x^2 - x - 1 = 0. - Michal Paulovic, Jan 16 2023
The minimal polynomial of phi^n, for nonvanishing integer n, is P(n, x) = x^2 - L(n)*x + (-1)^n, with the Lucas numbers L = A000032, extended to negative arguments with L(n) = (-1)^n*L(n). P(0, x) = (x - 1)^2 is not minimal. - Wolfdieter Lang, Feb 20 2025
This is the largest real zero x of (x^4 + x^2 + 1)^2 = 2*(x^8 + x^4 + 1). - Thomas Ordowski, May 14 2025

Examples

			1.6180339887498948482045868343656381177203091798057628621...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 112, 123, 184, 190, 203.
  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993 - Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1975, pages 76-77, 1993.
  • Richard A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific, River Edge, NJ, 1997.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, Section 1.2.
  • Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, Simon & Schuster, NY, 1961.
  • Martin Gardner, Weird Water and Fuzzy Logic: More Notes of a Fringe Watcher, "The Cult of the Golden Ratio", Chapter 9, Prometheus Books, 1996, pages 90-97.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 287.
  • H. E. Huntley, The Divine Proportion, Dover, NY, 1970.
  • Mario Livio, The Golden Ratio, Broadway Books, NY, 2002. [see the review by G. Markowsky in the links field]
  • Gary B. Meisner, The Golden Ratio: The Divine Beauty of Mathematics, Race Point Publishing (The Quarto Group), 2018. German translation: Der Goldene Schnitt, Librero, 2023.
  • Scott Olsen, The Golden Section, Walker & Co., NY, 2006.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 137-139.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Hans Walser, The Golden Section, Math. Assoc. of Amer. Washington DC 2001.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 36-40.
  • Claude-Jacques Willard, Le nombre d'or, Magnard, Paris, 1987.

Crossrefs

Programs

  • Maple
    Digits:=1000; evalf((1+sqrt(5))/2); # Wesley Ivan Hurt, Nov 01 2013
  • Mathematica
    RealDigits[(1 + Sqrt[5])/2, 10, 130] (* Stefan Steinerberger, Apr 02 2006 *)
    RealDigits[ Exp[ ArcSinh[1/2]], 10, 111][[1]] (* Robert G. Wilson v, Mar 01 2008 *)
    RealDigits[GoldenRatio,10,120][[1]] (* Harvey P. Dale, Oct 28 2015 *)
  • PARI
    default(realprecision, 20080); x=(1+sqrt(5))/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b001622.txt", n, " ", d));  \\ Harry J. Smith, Apr 19 2009
    
  • PARI
    /* Digit-by-digit method: write it as 0.5+sqrt(1.25) and start at hundredths digit */
    r=11; x=400; print(1); print(6);
    for(dig=1, 110, {d=0; while((20*r+d)*d <= x, d++);
    d--; /* while loop overshoots correct digit */
    print(d); x=100*(x-(20*r+d)*d); r=10*r+d})
    \\ Michael B. Porter, Oct 24 2009
    
  • PARI
    a(n) = floor(10^(n-1)*(quadgen(5))%10);
    alist(len) = digits(floor(quadgen(5)*10^(len-1))); \\ Chittaranjan Pardeshi, Jun 22 2022
    
  • Python
    from sympy import S
    def alst(n): # truncate extra last digit to avoid rounding
      return list(map(int, str(S.GoldenRatio.n(n+1)).replace(".", "")))[:-1]
    print(alst(105)) # Michael S. Branicky, Jan 06 2021

Formula

Equals Sum_{n>=2} 1/A064170(n) = 1/1 + 1/2 + 1/(2*5) + 1/(5*13) + 1/(13*34) + ... - Gary W. Adamson, Dec 15 2007
Equals Hypergeometric2F1([1/5, 4/5], [1/2], 3/4) = 2*cos((3/5)*arcsin(sqrt(3/4))). - Artur Jasinski, Oct 26 2008
From Hieronymus Fischer, Jan 02 2009: (Start)
The fractional part of phi^n equals phi^(-n), if n is odd. For even n, the fractional part of phi^n is equal to 1-phi^(-n).
General formula: Provided x>1 satisfies x-x^(-1)=floor(x), where x=phi for this sequence, then:
for odd n: x^n - x^(-n) = floor(x^n), hence fract(x^n) = x^(-n),
for even n: x^n + x^(-n) = ceiling(x^n), hence fract(x^n) = 1 - x^(-n),
for all n>0: x^n + (-x)^(-n) = round(x^n).
x=phi is the minimal solution to x - x^(-1) = floor(x) (where floor(x)=1 in this case).
Other examples of constants x satisfying the relation x - x^(-1) = floor(x) include A014176 (the silver ratio: where floor(x)=2) and A098316 (the "bronze" ratio: where floor(x)=3). (End)
Equals 2*cos(Pi/5) = e^(i*Pi/5) + e^(-i*Pi/5). - Eric Desbiaux, Mar 19 2010
The solutions to x-x^(-1)=floor(x) are determined by x=(1/2)*(m+sqrt(m^2+4)), m>=1; x=phi for m=1. In terms of continued fractions the solutions can be described by x=[m;m,m,m,...], where m=1 for x=phi, and m=2 for the silver ratio A014176, and m=3 for the bronze ratio A098316. - Hieronymus Fischer, Oct 20 2010
Sum_{n>=1} x^n/n^2 = Pi^2/10 - (log(2)*sin(Pi/10))^2 where x = 2*sin(Pi/10) = this constant here. [Jolley, eq 360d]
phi = 1 + Sum_{k>=1} (-1)^(k-1)/(F(k)*F(k+1)), where F(n) is the n-th Fibonacci number (A000045). Proof. By Catalan's identity, F^2(n) - F(n-1)*F(n+1) = (-1)^(n-1). Therefore,(-1)^(n-1)/(F(n)*F(n+1)) = F(n)/F(n+1) - F(n-1)/F(n). Thus Sum_{k=1..n} (-1)^(k-1)/(F(k)*F(k+1)) = F(n)/F(n+1). If n goes to infinity, this tends to 1/phi = phi - 1. - Vladimir Shevelev, Feb 22 2013
phi^n = (A000032(n) + A000045(n)*sqrt(5)) / 2. - Thomas Ordowski, Jun 09 2013
Let P(q) = Product_{k>=1} (1 + q^(2*k-1)) (the g.f. of A000700), then A001622 = exp(Pi/6) * P(exp(-5*Pi)) / P(exp(-Pi)). - Stephen Beathard, Oct 06 2013
phi = i^(2/5) + i^(-2/5) = ((i^(4/5))+1) / (i^(2/5)) = 2*(i^(2/5) - (sin(Pi/5))i) = 2*(i^(-2/5) + (sin(Pi/5))i). - Jaroslav Krizek, Feb 03 2014
phi = sqrt(2/(3 - sqrt(5))) = sqrt(2)/A094883. This follows from the fact that ((1 + sqrt(5))^2)*(3 - sqrt(5)) = 8, so that ((1 + sqrt(5))/2)^2 = 2/(3 - sqrt(5)). - Geoffrey Caveney, Apr 19 2014
exp(arcsinh(cos(Pi/2-log(phi)*i))) = exp(arcsinh(sin(log(phi)*i))) = (sqrt(3) + i) / 2. - Geoffrey Caveney, Apr 23 2014
exp(arcsinh(cos(Pi/3))) = phi. - Geoffrey Caveney, Apr 23 2014
cos(Pi/3) + sqrt(1 + cos(Pi/3)^2). - Geoffrey Caveney, Apr 23 2014
2*phi = z^0 + z^1 - z^2 - z^3 + z^4, where z = exp(2*Pi*i/5). See the Wikipedia Kronecker-Weber theorem link. - Jonathan Sondow, Apr 24 2014
phi = 1/2 + sqrt(1 + (1/2)^2). - Geoffrey Caveney, Apr 25 2014
Phi is the limiting value of the iteration of x -> sqrt(1+x) on initial value a >= -1. - Chayim Lowen, Aug 30 2015
From Isaac Saffold, Feb 28 2018: (Start)
1 = Sum_{k=0..n} binomial(n, k) / phi^(n+k) for all nonnegative integers n.
1 = Sum_{n>=1} 1 / phi^(2n-1).
1 = Sum_{n>=2} 1 / phi^n.
phi = Sum_{n>=1} 1/phi^n. (End)
From Christian Katzmann, Mar 19 2018: (Start)
phi = Sum_{n>=0} (15*(2*n)! + 8*n!^2)/(2*n!^2*3^(2*n+2)).
phi = 1/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
phi = Product_{k>=1} (1 + 2/(-1 + 2^k*(sqrt(4+(1-2/2^k)^2) + sqrt(4+(1-1/2^k)^2)))). - Gleb Koloskov, Jul 14 2021
Equals Product_{k>=1} (Fibonacci(3*k)^2 + (-1)^(k+1))/(Fibonacci(3*k)^2 + (-1)^k) (Melham and Shannon, 1995). - Amiram Eldar, Jan 15 2022
From Michal Paulovic, Jan 16 2023: (Start)
Equals the real part of 2 * e^(i * Pi / 5).
Equals 2 * sin(3 * Pi / 10) = 2*A019863.
Equals -2 * sin(37 * Pi / 10).
Equals 1 + 1 / (1 + 1 / (1 + 1 / (1 + 1 / (1 + 1 / ...)))).
Equals (2 + 3 * (2 + 3 * (2 + 3 * ...)^(1/4))^(1/4))^(1/4).
Equals (1 + 2 * (1 + 2 * (1 + 2 * ...)^(1/3))^(1/3))^(1/3).
Equals (1 + phi + (1 + phi + (1 + phi + ...)^(1/3))^(1/3))^(1/3).
Equals 13/8 + Sum_{k=0..oo} (-1)^(k+1)*(2*k+1)!/((k+2)!*k!*4^(2*k+3)).
(End)
phi^n = phi * A000045(n) + A000045(n-1). - Gary W. Adamson, Sep 09 2023
The previous formula holds for integer n, with F(-n) = (-1)^(n+1)*F(n), for n >= 0, with F(n) = A000045(n), for n >= 0. phi^n are integers in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Sep 16 2023
Equals Product_{k>=0} ((5*k + 2)*(5*k + 3))/((5*k + 1)*(5*k + 4)). - Antonio Graciá Llorente, Feb 24 2024
From Antonio Graciá Llorente, Apr 21 2024: (Start)
Equals Product_{k>=1} phi^(-2^k) + 1, with phi = A001622.
Equals Product_{k>=0} ((5^(k+1) + 1)*(5^(k-1/2) + 1))/((5^k + 1)*(5^(k+1/2) + 1)).
Equals Product_{k>=1} 1 - (4*(-1)^k)/(10*k - 5 + (-1)^k) = Product_{k>=1} A047221(k)/A047209(k).
Equals Product_{k>=0} ((5*k + 7)*(5*k + 1 + (-1)^k))/((5*k + 1)*(5*k + 7 + (-1)^k)).
Equals Product_{k>=0} ((10*k + 3)*(10*k + 5)*(10*k + 8)^2)/((10*k + 2)*(10*k + 4)*(10*k + 9)^2).
Equals Product_{k>=5} 1 + 1/(Fibonacci(k) - (-1)^k).
Equals Product_{k>=2} 1 + 1/Fibonacci(2*k).
Equals Product_{k>=2} (Lucas(k)^2 + (-1)^k)/(Lucas(k)^2 - 4*(-1)^k). (End)

Extensions

Additional links contributed by Lekraj Beedassy, Dec 23 2003
More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 24 2004
More terms from Stefan Steinerberger, Apr 02 2006
Broken URL to Project Gutenberg replaced by Georg Fischer, Jan 03 2009
Edited by M. F. Hasler, Feb 24 2014

A094874 Decimal expansion of (5-sqrt(5))/2.

Original entry on oeis.org

1, 3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2004

Keywords

Comments

Also the limiting ratio of Lucas(n)/Fibonacci(n+1), or Fibonacci(n-1)/Fibonacci(n+1) + 1. - Alexander Adamchuk, Oct 10 2007

Examples

			1.38196601125010515179541316563436188...
		

Crossrefs

Programs

Formula

Equals (2-phi)*(2+phi) = 2 - 1/phi = 3 - phi = (5-sqrt(5))/2 = (2*sin(Pi/5))^2, where phi is the golden ratio (A001622).
Equals Product_{n > 0} (1 + 1/A192223(n)). - Charles R Greathouse IV, Jun 26 2011
Equals 1 + Sum_{k >= 2} (-1)^k/(Fibonacci(k)*Fibonacci(k+1)). See Ni et al. - Michel Marcus, Jun 26 2018; corrected by Michel Marcus, Mar 11 2024
Equals Sum_{k>=0} binomial(2*k,k)/((k+1) * 5^k). - Amiram Eldar, Aug 03 2020
From Amiram Eldar, Nov 28 2024: (Start)
Equals 5*A244847 = 2*A187798 = 1/A242671 = A182007^2 = sqrt(A187426).
Equals Product_{k>=1} (1 + 1/A081012(k)). (End)

A192222 a(n) = Fibonacci(2^n + 1).

Original entry on oeis.org

1, 2, 5, 34, 1597, 3524578, 17167680177565, 407305795904080553832073954, 229265413057075367692743352179590077832064383222590237
Offset: 0

Views

Author

Jonathan Sondow, Jun 26 2011

Keywords

Comments

a(n) is the numerator of the n-th iterate when Newton's method is applied to the function x^2 - x - 1 with initial guess x = 1. The n-th iterate is a(n)/A058635(n). - Jason Zimba, Jan 20 2023

Crossrefs

Cf. A000045 (Fibonacci numbers F(n)), A001622, A134973 (decimal expansion of 3/phi), A192223 (Lucas(2^n + 1)), A338305.

Programs

  • Mathematica
    Table[Fibonacci[2^n + 1], {n, 0, 10}] (* T. D. Noe, Jan 11 2012 *)

Formula

a(n) = A000045(2^n + 1).
Product_{n>0} (1 + 1/a(n)) = 3/phi = A134973, where phi = (1+sqrt(5))/2 is the golden mean.
Sum_{n>=0} 1/a(n) = A338305. - Amiram Eldar, Oct 22 2020

A230600 a(n) = Lucas(2^n - 1).

Original entry on oeis.org

2, 1, 4, 29, 1364, 3010349, 14662949395604, 347880681146567910619198829, 195816040085094172011386545446645681141059001652009364, 62041768337314169100816125405238438263014895218124648720624536859920496229610874552659773465281966850403949
Offset: 0

Views

Author

Peter Bala, Oct 28 2013

Keywords

Comments

Compare with A192223(n) = Lucas(2^n + 1).
Let x and b be positive real numbers. We define a Pierce expansion of x to the base b to be a (possibly infinite) increasing sequence of positive integers [a(1), a(2), a(3), ...] such that we have the alternating series representation x = b/a(1) - b^2/(a(1)*a(2)) + b^3/(a(1)*a(2)*a(3)) - .... This definition generalizes the ordinary Pierce expansion of a real number 0 < x < 1, where the base b is taken equal to 1. Depending on the values of x and b such a generalized Pierce expansion to the base b may not exist, and if it does exist it may not be unique.
Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence, apart from the initial term, provides a Pierce expansion of 1 to the base phi. That is, we have the identity 1 = phi/1 - phi^2/(1*4) + phi^3/(1*4*29) - phi^4/(1*4*29*1364) + ....
This result can be extended in two ways. Firstly, for k odd, the sequence {Lucas(k*(2^n - 1))} n>=1 gives a Pierce expansion of 1 to the base phi^k. Secondly, for n = 1,2,3,..., the sequence [a(n),a(n+1),a(n+2),...] provides a Pierce expansion of the quadratic irrational 1/phi^(2^n - 2) = Fibonacci(2^n - 1) - Fibonacci(2^n - 2)*phi to the base phi. Some examples are given below.

Examples

			A Pierce expansion of 1/phi^(2^n - 2) = Fibonacci(2^n - 1) - Fibonacci(2^n - 2)*phi to the base phi for n = 1 to 4.
n = 1: 1        = phi/1 - phi^2/(1*4) + phi^3/(1*4*29) - phi^4/(1*4*29*1364) + ...
n = 2: 1/phi^2  = phi/4 - phi^2/(4*29) + phi^3/(4*29*1364) - phi^4/(4*29*1364*3010349) + ...
n = 3: 1/phi^6  = phi/29 - phi^2/(29*1364) + phi^3/(29*1364*3010349) - ...
n = 4: 1/phi^14 = phi/1364 - phi^2/(1364*3010349) + ...
		

Crossrefs

Programs

  • Magma
    [Lucas(2^n -1): n in [0..10]]; // G. C. Greubel, Dec 22 2017
  • Mathematica
    Table[LucasL[2^n - 1], {n, 0, 10}]
  • PARI
    for(n=0,10, print1(fibonacci(2^n) + fibonacci(2^n -2), ", ")) \\ G. C. Greubel, Dec 22 2017
    

Formula

a(n) = Lucas(2^n - 1) = A000032(2^n-1) = phi^(2^n-1) + (-1/phi)^(2^n-1).
Recurrence equation: a(0) = 2, a(1) = 1 and a(n) = floor(phi*a(n-1)^2) + 4 for n >= 2.
Product {n = 2..k} (1 - 1/a(n)) = 1/2 + Fibonacci(2^k - 1)/(2*Lucas(2^k - 1)).
Product {n >= 2} (1 - 1/a(n)) = (5 + sqrt(5))/10.
a(n) = A000032(A000225(n)). - Omar E. Pol, Oct 28 2013

A230601 a(n) = Lucas(2^n + 2).

Original entry on oeis.org

4, 7, 18, 123, 5778, 12752043, 62113250390418, 1473646213395791149646646123, 829490056885282616312940022414182153153900944625970578, 262813148121156922478324605390890951672774150584488451750823334086851733999224817160730017360019778038580843
Offset: 0

Views

Author

Peter Bala, Oct 28 2013

Keywords

Comments

Let x and b be positive real numbers. We define an Engel expansion of x to the base b to be a (possibly infinite) nondecreasing sequence of positive integers [a(1), a(2), a(3), ...] such that we have the series representation x = b/a(1) + b^2/(a(1)*a(2)) + b^3/(a(1)*a(2)*a(3)) + .... Depending on the values of x and b such an expansion may not exist, and if it does exist it may not be unique. When b = 1 we recover the ordinary Engel expansion of x.
Let Phi := 1/2*(sqrt(5) - 1) denote the reciprocal of the golden ratio. This sequence, apart from the initial term, gives an Engel expansion of x = Phi^6 to the base b = Phi^2. The associated Engel series expansion of Phi^6 to the base Phi^2 begins Phi^6 = Phi^2/7 + Phi^4/(7*18) + Phi^6/(7*18*123) + Phi^8/(7*18*123*5778) + ....
This result can be extended in two ways. Firstly, for k = 1,2,3,... , the sequence {Lucas(k*(2^n + 2))}n>=1 is an Engel expansion of Phi^(6*k) to the base Phi^(2*k). Secondly, for n = 1,2,3,..., the sequence [a(n),a(n+1),a(n+2),...] is an Engel expansion of Phi^(2^n + 4) to the base Phi^2. See below for some examples.

Examples

			Engel series expansion of Phi^(2^n + 4) to the base Phi^2 for n = 1 to 4.
n = 1
Phi^6 = Phi^2/7 + Phi^4/(7*18) + Phi^6/(7*18*123) + Phi^8/(7*18*123*5778) + ...
n = 2:
Phi^8 = Phi^2/18 + Phi^4/(18*123) + Phi^6/(18*123*5778) + ...
n = 3:
Phi^12 = Phi^2/123 + Phi^4/(123*5778) + Phi^6/(123*5778*12752043) + ...
n = 4:
Phi^20 = Phi^2/5778 + Phi^4/(5778*12752043) + ...
		

Crossrefs

Programs

  • Magma
    [Lucas(2^n +2): n in [0..10]]; // G. C. Greubel, Dec 22 2017
  • Mathematica
    Table[LucasL[2^n + 2], {n, 0, 10}]
  • PARI
    for(n=0,10, print1(fibonacci(2^n+3) + fibonacci(2^n +1), ", ")) \\ G. C. Greubel, Dec 22 2017
    

Formula

a(n) = A000032(2^n+2) = phi^(2^n+2) + (1/phi)^(2^n+2), where phi = 1/2*(1 + sqrt(5)) denotes the golden ratio A001622.
Recurrence equation: a(0) = 4 and a(n) = floor((2 - phi)*a(n-1)^2) for n >= 1.

A230602 a(n) = Lucas(2^n - 2).

Original entry on oeis.org

2, 3, 18, 843, 1860498, 9062201101803, 215002084978043708894524818, 121020968315000050139390193037122554865361969834971243, 38343921554607207587938114587587818441864732465057252794474861753545122655196096751375348482086938743684498
Offset: 1

Views

Author

Peter Bala, Oct 28 2013

Keywords

Comments

Let phi := 1/2*(1 + sqrt(5)) denote the golden ratio. This sequence, apart from the initial term, gives an Engel expansion of 1 to the base phi^2 (see A230601 for a definition of this term). The associated Engel series expansion of 1 to the base phi^2 begins 1 = phi^2/3 + phi^4/(3*18) + phi^6/(3*18*843) + phi^8/(3*18*843*1860498) + .... This result can be extended in two ways. Firstly, the sequence Lucas(2*k*(2^n - 1)) for k = 1,2,3,... is an Engel expansion of 1 to the base phi^(2*k). Secondly, for n = 1,2,3,... the sequence [a(n),a(n+1),a(n+2),...] is an Engel expansion of phi^(4 - 2^n) to the base phi^2. Some example are given below.

Examples

			Engel series expansion of phi^(4 - 2^n) to the base phi^2 for n = 1 to 5.
n = 1:
phi^2 = phi^2/2 + phi^4/(2*3) + phi^6/(2*3*18) + phi^8/(2*3*18*843) + ...
n = 2:
1 = phi^2/3 + phi^4/(3*18) + phi^6/(3*18*843) + phi^8/(3*18*843*1860498) + ...
n = 3:
1/phi^4 = phi^2/18 + phi^4/(18*843) + phi^6/(18*843*1860498) + ...
n = 4:
1/phi^12 = phi^2/843 + phi^4/(843*1860498) + phi^6/(843*1860498*9062201101803) + ...
n = 5:
1/phi^28 = phi^2/1860498 + phi^4/(1860498*9062201101803) + ...
		

Crossrefs

Programs

  • Mathematica
    Table[LucasL[2^n - 2], {n, 1, 10}]

Formula

a(n) = A000032(2^n-2) = phi^(2^n-2) + (1/phi)^(2^n-2), where phi := 1/2*(1 + sqrt(5)).
Recurrence equation: a(1) = 2, a(2) = 3 and a(n) = floor(phi^2*a(n-1)^2) - 5 for n >= 3.

A232326 Pierce expansion of 1 to the base Pi.

Original entry on oeis.org

3, 69, 310, 1017, 36745, 214369, 966652, 11159821, 74039764, 550021544, 4481549430, 16543857917, 87205978613, 476981856953, 30989048525367, 203786458494160, 711639924282497, 3174772986229899, 29814569078896025, 100158574806804154
Offset: 0

Views

Author

Peter Bala, Nov 26 2013

Keywords

Comments

Let r and b be positive real numbers. We define a Pierce expansion of r to the base b to be a (possibly infinite) increasing sequence of positive integers [a(0), a(1), a(2), ...] such that we have the alternating series representation r = b/a(0) - b^2/(a(0)*a(1)) + b^3/(a(0)*a(1)*a(2)) - .... Depending on the values of r and b such an expansion may not exist, and if it does exist it may not be unique. When b = 1 and 0 < r < 1 we recover the ordinary Pierce expansion of r.
See A058635, A192223 and A230600 for some predictable Pierce expansions to a base b other than 1.
In the particular case that the base b >= 1 and 0 < r < b then we can find a Pierce expansion of r to the base b as follows:
Define the map f(x) (which depends on the base b) by f(x) = x/b*ceiling(b/x) - 1 and let f^(n)(x) denote the n-th iterate of the map f(x), with the convention that f^(0)(x) = x.
For n = 0,1,2,... define a(n) = ceiling(b/f^(n)(-r)) until f^n(-r) = 0.
Then it can be shown that the sequence of positive integers |a(n)| is a Pierce expansion of r to the base b.
For the present sequence we apply this algorithm with r := 1 and with base b := Pi. See A232325 for an Engel expansion of 1 to the base Pi.

Crossrefs

Programs

  • Maple
    # Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1
    map_iterate := proc(n,b,x) option remember;
    if n = 0 then
       x
    else
       -1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x))
    end if
    end proc:
    # Define the (signed) terms of the expansion of x to the base b
    a := n -> ceil(evalf(b/map_iterate(n,b,x))):
    Digits:= 500:
    # Choose values for x and b
    x := -1: b:= Pi:
    seq(abs(a(n)), n = 0..19);

Formula

a(n) = ceiling(Pi/f^(n)(-1)), where f^(n)(x) denotes the n-th iterate of the map f(x) = x/Pi*ceiling(Pi/x) - 1, with the convention that f^(0)(x) = x.
Pierce series expansion of 1 to the base Pi:
1 = Pi/3 - Pi^2/(3*69) + Pi^3/(3*69*310) - Pi^4/(3*69*310*1017) + ....
The associated power series F(z) := 1 - ( z/3 - z^2/(3*69) + z^3/(3*69*310) - z^4/(3*69*310*1017) + ...) has a zero at z = Pi. Truncating the series F(z) to n terms produces a polynomial F_n(z) with rational coefficients which has a real zero close to Pi.
Showing 1-7 of 7 results.