A192223
a(n) = Lucas(2^n + 1).
Original entry on oeis.org
3, 4, 11, 76, 3571, 7881196, 38388099893011, 910763447271179530132922476, 512653048485188394162163283930413917147479973138989971
Offset: 0
Pierce series expansion of Phi^(2^n + 2) to the base Phi for n = 1 to 4:
n = 1:
Phi^4 = Phi/4 - Phi^2/(4*11) + Phi^3/(4*11*76) - Phi^4/(4*11*76*3571) + ...
n = 2:
Phi^6 = Phi/11 - Phi^2/(11*76) + Phi^3/(11*76*3571) - ...
n = 3:
Phi^10 = Phi/76 - Phi^2/(76*3571) + Phi^3/(76*3571*7881196) - ...
n = 4:
Phi^18 = Phi/3571 - Phi^2/(3571*7881196) + ...
-
Table[LucasL[2^n + 1], {n, 0, 10}] (* T. D. Noe, Jan 11 2012 *)
A230601
a(n) = Lucas(2^n + 2).
Original entry on oeis.org
4, 7, 18, 123, 5778, 12752043, 62113250390418, 1473646213395791149646646123, 829490056885282616312940022414182153153900944625970578, 262813148121156922478324605390890951672774150584488451750823334086851733999224817160730017360019778038580843
Offset: 0
Engel series expansion of Phi^(2^n + 4) to the base Phi^2 for n = 1 to 4.
n = 1
Phi^6 = Phi^2/7 + Phi^4/(7*18) + Phi^6/(7*18*123) + Phi^8/(7*18*123*5778) + ...
n = 2:
Phi^8 = Phi^2/18 + Phi^4/(18*123) + Phi^6/(18*123*5778) + ...
n = 3:
Phi^12 = Phi^2/123 + Phi^4/(123*5778) + Phi^6/(123*5778*12752043) + ...
n = 4:
Phi^20 = Phi^2/5778 + Phi^4/(5778*12752043) + ...
-
[Lucas(2^n +2): n in [0..10]]; // G. C. Greubel, Dec 22 2017
-
Table[LucasL[2^n + 2], {n, 0, 10}]
-
for(n=0,10, print1(fibonacci(2^n+3) + fibonacci(2^n +1), ", ")) \\ G. C. Greubel, Dec 22 2017
A230602
a(n) = Lucas(2^n - 2).
Original entry on oeis.org
2, 3, 18, 843, 1860498, 9062201101803, 215002084978043708894524818, 121020968315000050139390193037122554865361969834971243, 38343921554607207587938114587587818441864732465057252794474861753545122655196096751375348482086938743684498
Offset: 1
Engel series expansion of phi^(4 - 2^n) to the base phi^2 for n = 1 to 5.
n = 1:
phi^2 = phi^2/2 + phi^4/(2*3) + phi^6/(2*3*18) + phi^8/(2*3*18*843) + ...
n = 2:
1 = phi^2/3 + phi^4/(3*18) + phi^6/(3*18*843) + phi^8/(3*18*843*1860498) + ...
n = 3:
1/phi^4 = phi^2/18 + phi^4/(18*843) + phi^6/(18*843*1860498) + ...
n = 4:
1/phi^12 = phi^2/843 + phi^4/(843*1860498) + phi^6/(843*1860498*9062201101803) + ...
n = 5:
1/phi^28 = phi^2/1860498 + phi^4/(1860498*9062201101803) + ...
A232326
Pierce expansion of 1 to the base Pi.
Original entry on oeis.org
3, 69, 310, 1017, 36745, 214369, 966652, 11159821, 74039764, 550021544, 4481549430, 16543857917, 87205978613, 476981856953, 30989048525367, 203786458494160, 711639924282497, 3174772986229899, 29814569078896025, 100158574806804154
Offset: 0
-
# Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1
map_iterate := proc(n,b,x) option remember;
if n = 0 then
x
else
-1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x))
end if
end proc:
# Define the (signed) terms of the expansion of x to the base b
a := n -> ceil(evalf(b/map_iterate(n,b,x))):
Digits:= 500:
# Choose values for x and b
x := -1: b:= Pi:
seq(abs(a(n)), n = 0..19);
Showing 1-4 of 4 results.
Comments