cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192237 a(n) = 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4) for n >= 4, with initial terms 0,0,0,1.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 18, 51, 148, 428, 1236, 3573, 10326, 29842, 86246, 249255, 720360, 2081880, 6016744, 17388713, 50254314, 145237662, 419744634, 1213084507, 3505879292, 10132179204, 29282541372, 84628115229, 244579792318, 706848718634, 2042830710990, 5903890328655, 17062559724240, 49311712809136, 142513495013072
Offset: 0

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Crossrefs

With a different offset, equals (A192236)/2.
Other sequences with this recurrence but different initial conditions: A192234, A317973, A317974, A317975, A317976.

Programs

  • GAP
    a:=[0,0,0,1];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    I:=[0,0,0,1]; [n le 4 select I[n] else 2*(Self(n-1)+Self(n-2) +Self(n-3))-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Sep 06 2018
    
  • Mathematica
    q[x_]:= x + 1;
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevU[n, x]]]], {n, 1, 40}];
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192235 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192236 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 40}] (* A192237 *)
    (* by Peter J. C. Moses, Jun 25 2011 *)
    LinearRecurrence[{2,2,2,-1}, {0,0,0,1}, 40] (* Vincenzo Librandi, Sep 06 2018 *)
  • PARI
    concat(vector(3), Vec(x^3/(1-2*x-2*x^2-2*x^3+x^4) + O(x^40))) \\ Colin Barker, Sep 06 2018
    
  • Sage
    (x^3/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
    

Formula

G.f.: x^3 / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 12 2012 and Sep 06 2018

Extensions

Entry revised (with new offset and initial terms) by N. J. A. Sloane, Sep 03 2018