A192237 a(n) = 2*(a(n-1) + a(n-2) + a(n-3)) - a(n-4) for n >= 4, with initial terms 0,0,0,1.
0, 0, 0, 1, 2, 6, 18, 51, 148, 428, 1236, 3573, 10326, 29842, 86246, 249255, 720360, 2081880, 6016744, 17388713, 50254314, 145237662, 419744634, 1213084507, 3505879292, 10132179204, 29282541372, 84628115229, 244579792318, 706848718634, 2042830710990, 5903890328655, 17062559724240, 49311712809136, 142513495013072
Offset: 0
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1).
Crossrefs
Programs
-
GAP
a:=[0,0,0,1];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 30 2019
-
Magma
I:=[0,0,0,1]; [n le 4 select I[n] else 2*(Self(n-1)+Self(n-2) +Self(n-3))-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Sep 06 2018
-
Mathematica
q[x_]:= x + 1; reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, ChebyshevU[n, x]]]], {n, 1, 40}]; Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192235 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192236 *) Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 40}] (* A192237 *) (* by Peter J. C. Moses, Jun 25 2011 *) LinearRecurrence[{2,2,2,-1}, {0,0,0,1}, 40] (* Vincenzo Librandi, Sep 06 2018 *)
-
PARI
concat(vector(3), Vec(x^3/(1-2*x-2*x^2-2*x^3+x^4) + O(x^40))) \\ Colin Barker, Sep 06 2018
-
Sage
(x^3/(1-2*x-2*x^2-2*x^3+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
Formula
G.f.: x^3 / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 12 2012 and Sep 06 2018
Extensions
Entry revised (with new offset and initial terms) by N. J. A. Sloane, Sep 03 2018