A192232
Constant term of the reduction of n-th Fibonacci polynomial by x^2 -> x+1. (See Comments.)
Original entry on oeis.org
1, 0, 2, 1, 6, 7, 22, 36, 89, 168, 377, 756, 1630, 3353, 7110, 14783, 31130, 65016, 136513, 285648, 599041, 1254456, 2629418, 5508097, 11542854, 24183271, 50674318, 106173180, 222470009, 466131960, 976694489, 2046447180, 4287928678, 8984443769, 18825088134
Offset: 1
The first four Fibonacci polynomials and their reductions by x^2->x+1 are shown here:
F1(x)=1 -> 1 + 0x
F2(x)=x -> 0 + 1x
F3(x)=x^2+1 -> 2+1x
F4(x)=x^3+2x -> 1+4x
F5(x)=x^4+3x^2+1 -> (x+1)^2+3(x+1)+1 -> 6+6x.
From these, read A192232=(1,0,1,1,6,...) and A112576=(0,1,1,4,6,...).
-
q[x_] := x + 1;
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[FixedPoint[Expand[#1 /. reductionRules] &, Fibonacci[n, x]], {n, 1, 40}];
Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}]
(* A192232 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}]
(* A112576 *)
(* Peter J. C. Moses, Jun 25 2011 *)
LinearRecurrence[{1, 3, -1, -1}, {1, 0, 2, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
-
Vec((1-x-x^2)/(1-x-3*x^2+x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 08 2013
A192238
Constant term in the reduction of the polynomial x(x+1)(x+2)...(x+n-1) by x^2 -> x+1.
Original entry on oeis.org
1, 0, 1, 6, 37, 256, 1999, 17490, 169895, 1816320, 21205745, 268547510, 3667187645, 53722014720, 840455448415, 13985762375970, 246675543859855, 4596826887347200, 90249727067243425, 1861971659969854950, 40274219840308939925
Offset: 1
-
q[x_] := x + 1;
p[0, x_] := 1; p[1, x_] := x;
p[n_, x_] := (x + n) p[n - 1, x] /; n > 1
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[
Last[Most[
FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
20}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 20}] (* A192238 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 20}] (* A192239 *)
(* Peter J. C. Moses, Jun 25 2011 *)
A192936
Constant term of the reduction by x^2 -> x + 1 of the polynomial p(n,x) = Product_{k=1..n} (x+k).
Original entry on oeis.org
1, 1, 3, 13, 71, 463, 3497, 29975, 287265, 3042545, 35284315, 444617525, 6048575335, 88347242335, 1378930649745, 22903345844335, 403342641729665, 7506843094993825, 147226845692229875, 3034786640911840925, 65592491119118514375
Offset: 0
The first four polynomials p(n,x) and their reductions are as follows:
p(0,x) = 1
p(1,x) = (x+1) -> 1 + x
p(2,x) = (x+1)*(x+2) -> 3 + 4*x
p(3,x) = (x+1)*(x+2)*(x+3) -> 13 + 19*x
From these, read
A192936=(1,1,3,13,...) and A192239=(0,1,3,13,...)
-
List([0..30], n-> (-1)^n*Sum([0..n+2], k-> (-1)^(n-k)* Stirling1(n+2, k)*Fibonacci(k+1)) ); # G. C. Greubel, Jul 27 2019
-
[(-1)^n*(&+[StirlingFirst(n+2,k)*Fibonacci(k+1): k in [0..n+2]]): n in [0..30]]; // G. C. Greubel, Feb 16 2019
-
(* First program *)
q = x^2; s = x + 1; z = 26;
p[0, x]:= 1; p[n_, x_]:= (x+n)*p[n-1, x];
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1];
t:= Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192936 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A306183 *)
(* Second program *)
Table[(-1)^n*Sum[StirlingS1[n+2, k]*Fibonacci[k+1], {k, 0, n+2}], {n, 0, 30}] (* G. C. Greubel, Feb 16 2019 *)
-
{a(n) = (-1)^n*sum(k=0,n+2, stirling(n+2,k,1)*fibonacci(k+1))};
vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 16 2019
-
[sum((-1)^k*stirling_number1(n+2,k)*fibonacci(k+1) for k in (0..n+2)) for n in (0..30)] # G. C. Greubel, Feb 16 2019
Showing 1-3 of 3 results.
Comments