cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100879 a(n) = n^sigma(n).

Original entry on oeis.org

1, 8, 81, 16384, 15625, 2176782336, 5764801, 35184372088832, 2541865828329, 1000000000000000000, 3138428376721, 1648446623609512543951043690496, 3937376385699289, 3214199700417740936751087616
Offset: 1

Views

Author

Odimar Fabeny, Jan 09 2005

Keywords

Examples

			a(1) = 1^1 = 1;
a(2) = 2^(1+2) = 8;
a(3) = 3^(1+3) = 81;
a(4) = 4^(1+2+4) = 16384.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(n^add(d,d=divisors(n)),n=1..17); # C. Ronaldo, Jan 19 2005
  • Mathematica
    Table[n^DivisorSigma[1,n],{n,20}] (* Harvey P. Dale, Oct 05 2011 *)
  • PARI
    a(n)=n^sigma(n) \\ Charles R Greathouse IV, Aug 25 2014

Formula

a(n) = n^A000203(n). - Michel Marcus, Mar 17 2018
Sum_{n>=1} 1/a(n) = A192265. - Amiram Eldar, Nov 15 2020

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005

A192266 Decimal expansion of Sum_{k >= 1} 1/k^sigma_*(k) where sigma_*(n) is the sum of the anti-divisors of n.

Original entry on oeis.org

2, 1, 2, 7, 8, 2, 7, 8, 0, 2, 4, 2, 5, 0, 7, 1, 7, 8, 3, 0, 4, 4, 1, 3, 1, 7, 4, 6, 9, 6, 6, 0, 9, 9, 2, 6, 2, 4, 5, 0, 7, 7, 3, 5, 3, 0, 8, 3, 4, 1, 9, 8, 9, 7, 3, 0, 9, 4, 3, 0, 6, 8, 3, 7, 1, 7, 1, 8, 7, 1, 8, 2, 8, 4, 3, 0, 3, 2, 7, 1, 4, 2, 5, 6, 4, 8
Offset: 1

Views

Author

Paolo P. Lava, Jun 27 2011

Keywords

Comments

Continued fraction (2,7,1,4,1,1,1,6,4,1,11,1,2...).

Examples

			1/1^sigma*(1)+ 1/2^sigma*(2) + 1/3^sigma*(3) + 1/4^sigma*(4) + 1/5^sigma*(5) + 1/6^sigma*(6) + ... = 1/1^0 + 1/2^0 + 1/3^2 + 1/4^3 + 1/5^5 + 1/6^4 + ... = 2.12782780242507..
		

Crossrefs

Programs

Extensions

Corrected and edited by R. J. Mathar, Jun 27 2011

A239725 Decimal expansion of sum(1/k^(phi(k)), k=1..infinity), where phi(n) is the Euler totient function.

Original entry on oeis.org

1, 7, 0, 3, 3, 9, 1, 7, 9, 9, 2, 8, 1, 5, 3, 0, 5, 4, 5, 3, 0, 5, 2, 0, 4, 8, 3, 9, 4, 1, 9, 5, 8, 4, 9, 2, 8, 8, 8, 3, 0, 6, 2, 6, 5, 1, 9, 4, 5, 0, 5, 5, 4, 1, 2, 9, 1, 4, 5, 8, 2, 5, 3, 1, 0, 7, 8, 6, 2, 1, 7, 6, 3, 5, 5, 1, 2, 0, 5, 6, 4, 3, 4, 7, 7, 9, 0
Offset: 1

Views

Author

Paolo P. Lava, Mar 25 2014

Keywords

Comments

Rational approximation: 29329/17218.
Continued fraction: (1, 1, 2, 2, 1, 2, 4, 36, 3, 1, 11, …).

Examples

			1.70339179928153054530520483941958492888306265194505541291458253107862176...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local k; print(evalf(add(1/k^phi(k),k=1..q),100)); end: P(1000);
Showing 1-3 of 3 results.