cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A300906 Numbers k such that sigma(k)^k divides k^sigma(k).

Original entry on oeis.org

1, 6, 28, 84, 120, 364, 420, 496, 672, 840, 1080, 1320, 1488, 1782, 2280, 2760, 3276, 3360, 3472, 3480, 3720, 3780, 5640, 7080, 7392, 7440, 7560, 8128, 8736, 9240, 9480, 10416, 10920, 11880, 12400, 15456, 15960, 16368, 16380, 17880, 18360, 18600, 19320, 20520
Offset: 1

Views

Author

Jaroslav Krizek, Mar 20 2018

Keywords

Comments

Numbers k such that A217872(k) divides A100879(k).
Numbers k such that A300905(k) = 0.
Corresponding quotients: 1, 729, 123476695691247935826229781856256, ...
m-perfect numbers k (A007691) are terms iff m divides k.

Examples

			6 is a term because 6^sigma(6) / sigma(6)^6 = 6^12 / 12^6 = 2176782336 / 2985984 = 729 (integer).
		

Crossrefs

Programs

  • GAP
    Filtered([1..30000],n->PowerModInt(n,Sigma(n),Sigma(n)^n)=0); # Muniru A Asiru, Mar 20 2018
    
  • Magma
    [n: n in[1..20000]  | n^SumOfDivisors(n) mod SumOfDivisors(n)^n eq 0];
    
  • Maple
    with(numtheory):
    select(n->n &^ sigma(n) mod sigma(n)^n =0, [`$`(1..30000)]); # Muniru A Asiru, Mar 20 2018
  • PARI
    isok(n) = my(s = sigma(n)); Mod(n, s^n)^s == 0; \\ Michel Marcus, Mar 23 2018

A165797 a(n) = n^( sigma(n) - tau(n) ).

Original entry on oeis.org

1, 2, 9, 256, 625, 1679616, 117649, 8589934592, 3486784401, 100000000000000, 25937424601, 552061438912436417593344, 23298085122481, 83668255425284801560576, 332525673007965087890625
Offset: 1

Views

Author

Jaroslav Krizek, Sep 27 2009

Keywords

Comments

The power of n with exponent given by the difference between its sum of divisors and its count of divisors.

Examples

			a(4) = 4^(sigma(4)-tau(4)) = 4^(7-3) = 4^4 = 256.
		

Programs

  • Mathematica
    Table[n^[ DivisorSigma[1, n] - DivisorSigma[0, n]], {n, 50}]

Formula

a(n) = n^(A000203(n)-A000005(n)) = n^A000203(n) / n^A000005(n) = n^A065608(n).
a(n) = A100879(n) / A062758(n).
a(p) = p^(p-1) for p = prime.

Extensions

Slightly edited by R. J. Mathar, Sep 29 2009

A300905 a(n) = n^sigma(n) mod sigma(n)^n.

Original entry on oeis.org

0, 8, 17, 1978, 73, 0, 1570497, 1009588832, 7390478182, 1391503283200, 166394893969, 151448237549551616, 762517292682713, 18685202394240778240, 814227337406354049, 187036938412352867328077, 947615093635545799201, 2095989269871299377743863001
Offset: 1

Views

Author

Jaroslav Krizek, Mar 14 2018

Keywords

Comments

sigma(n) = the sum of the divisors of n (A000203).
n^sigma(n) > sigma(n)^n for all n > 2.

Examples

			For n = 6; a(6) = 0 because 6^sigma(6) mod sigma(6)^6 = 6^12 mod 12^6 = 2176782336 mod 2985984 = 0.
		

Crossrefs

Programs

  • GAP
    List([1..20],n->PowerModInt(n,Sigma(n),Sigma(n)^n))); # Muniru A Asiru, Mar 20 2018
  • Magma
    [n^SumOfDivisors(n) mod SumOfDivisors(n)^n: n in[1..20]];
    
  • Maple
    with(numtheory): seq(n &^ sigma(n) mod sigma(n)^n,n=1..20); # Muniru A Asiru, Mar 20 2018
  • Mathematica
    Array[With[{s = DivisorSigma[1, #]}, PowerMod[#, s, s^#]] &, 18] (* Michael De Vlieger, Mar 16 2018 *)
  • PARI
    a(n) = my(s=sigma(n)); lift(Mod(n, s^n)^s); \\ Michel Marcus, Mar 17 2018
    

Formula

a(n) = A100879(n) mod A217872(n).
a(n) = 0 for numbers n in A300906.
If n is a k-perfect number from A007691, then a(n) = 0 iff k divides n.

A176030 a(n) = n^(sigma_2(n)).

Original entry on oeis.org

1, 32, 59049, 4398046511104, 1490116119384765625, 808281277464764060643139600456536293376, 1798465042647412146620280340569649349251249
Offset: 1

Views

Author

Michel Lagneau, Apr 06 2010

Keywords

Comments

sigma_2 = A001157 is the sum of squares of divisors of n.

Examples

			a(1) = 1^1 = 1.
a(2) = 2^(1+4) = 32.
a(3) = 3^(1+9) = 59049.
		

Crossrefs

Programs

  • Mathematica
    Table[n^DivisorSigma[2,n], {n, 20}]

Formula

a(n) = n^A001157(n).
Showing 1-4 of 4 results.