A192446 Number of lattice paths from (0,0) to (n,n) using steps (1,0), (3,0), (0,1), (0,3).
1, 2, 6, 30, 154, 768, 3906, 20232, 105750, 556328, 2943432, 15646932, 83500126, 447057380, 2400249624, 12918250836, 69674241654, 376489511460, 2037768450480, 11045915485740, 59955446568276, 325821729044784, 1772588671356204, 9653187691115640, 52617711157401186, 287051310425050668
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1344 (first 304 terms from Gheorghe Coserea)
Programs
-
Maple
REL := 3*s^2*x^2-(1-2*s^2+2*s^3)*x-s*(s^3+2*s^2+s-1); ogf := sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3); series(eval(ogf, s=RootOf(REL,s)),x=0,30); # Mark van Hoeij, Apr 17 2013 # second Maple program: b:= proc(x, y) option remember; `if`(y=0, 1, add((p-> `if`(p[1]<0, 0, b(p[1], p[2])))(sort([x, y]-h)), h=[[1, 0], [0, 1], [3, 0], [0, 3]])) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, Dec 28 2018
-
Mathematica
a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k-1] + a[n, k-3] + a[n-1, k] + a[n-3, k]; a[, ] = 0; a[n_] := a[n, n]; a /@ Range[0, 30] (* Jean-François Alcover, Oct 06 2019 *)
-
PARI
/* same as in A092566 but use */ steps=[[1,0], [3,0], [0,1], [0,3]]; /* Joerg Arndt, Jun 30 2011 */
-
PARI
seq(N) = { my(x='x + O('x^N), d=16*x^6 + 16*x^5 + 16*x^4 - 8*x^3 - 4*x^2 + 1, s=serreverse((1 - 2*x^2 + 2*x^3 - sqrt(d))/(6*x^2))); Vec(sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3)); }; seq(26) \\ Gheorghe Coserea, Aug 06 2018
Formula
G.f.: sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3) where s is a function satisfying 3*s^2*x^2-(1-2*s^2+2*s^3)*x-s*(s^3+2*s^2+s-1)=0. - Mark van Hoeij, Apr 17 2013
From Gheorghe Coserea, Aug 06 2018: (Start)
G.f. y=A(x) satisfies:
0 = (4*x^3 + 8*x^2 + 4*x - 1)^4*(108*x^3 - 108*x^2 + 36*x - 31)^2*y^8 + 4*(4*x^3 + 8*x^2 + 4*x - 1)^3*(36*x^3 + 36*x^2 - 4*x - 13)*(108*x^3 - 108*x^2 + 36*x - 31)*y^6 + 2*(4*x^3 + 8*x^2 + 4*x - 1)^2*(2160*x^6 + 4320*x^5 + 1872*x^4 - 1784*x^3 - 1576*x^2 + 472*x + 431)*y^4 + 4*(4*x^3 + 8*x^2 + 4*x - 1)*(112*x^6 + 448*x^5 + 688*x^4 + 456*x^3 + 96*x^2 + 40*x + 55)*y^2 + (4*x^3 + 12*x^2 + 12*x + 3)^2.
0 = (4*x^3 + 8*x^2 + 4*x - 1)*(108*x^3 - 108*x^2 + 36*x - 31)*(270*x^4 + 180*x^3 + 144*x^2 - 225*x - 59)*y''' + (1283040*x^9 + 1924560*x^8 + 1080864*x^7 - 1425816*x^6 - 2135376*x^5 + 33048*x^4 + 702468*x^3 + 134520*x^2 + 43892*x + 30575)*y'' + 30*(111780*x^8 + 149040*x^7 + 120960*x^6 - 122094*x^5 - 172206*x^4 - 6012*x^3 + 36615*x^2 + 10298*x - 1541)*y' + 60*(29160*x^7 + 34020*x^6 + 36288*x^5 - 43092*x^4 - 45882*x^3 - 6462*x^2 + 1890*x + 913)*y.
(End)
Comments