A192503 Ludic prime numbers.
2, 3, 5, 7, 11, 13, 17, 23, 29, 37, 41, 43, 47, 53, 61, 67, 71, 83, 89, 97, 107, 127, 131, 149, 157, 173, 179, 181, 193, 211, 223, 227, 233, 239, 257, 277, 283, 307, 313, 331, 337, 353, 359, 383, 389, 397, 419, 421, 431, 433, 463, 467, 503, 509, 541, 577
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Haskell
a192503 n = a192503_list !! (n-1) a192503_list = filter ((== 1) . a010051) a003309_list
-
Mathematica
a3309[nmax_] := a3309[nmax] = Module[{t = Range[2, nmax], k, r = {1}}, While[Length[t] > 0, k = First[t]; AppendTo[r, k]; t = Drop[t, {1, -1, k}]]; r]; ludicQ[n_, nmax_] /; 1 <= n <= nmax := MemberQ[a3309[nmax], n]; terms = 1000; f[nmax_] := f[nmax] = Select[Range[nmax], ludicQ[#, nmax] && PrimeQ[#]&] // PadRight[#, terms]&; f[nmax = terms]; f[nmax = 2 nmax]; While[f[nmax] != f[nmax/2], nmax = 2 nmax]; seq = f[nmax] (* Jean-François Alcover, Dec 10 2021, after Ray Chandler in A003309 *)
-
PARI
A192503(maxn,bflag=0)={my(Vw=vector(maxn, x, x+1), Vl=Vec([1]), vwn=#Vw,i,vj,L=List()); while(vwn>0, i=Vw[1]; Vl=concat(Vl,[i]); Vw=vector((vwn*(i-1))\i,x,Vw[(x*i+i-2)\(i-1)]); vwn=#Vw); kill(Vw); vwn=#Vl; for(j=1,vwn, vj=Vl[j]; if(isprime(vj),listput(L,vj))); kill(Vw); vwn=#L; if(bflag, for(i=1,vwn, print(i," ",L[i]))); if(!bflag, return(Vec(L))); } \\ Anatoly E. Voevudko, Feb 28 2016