A192668 Floor-Sqrt transform of superfactorials (A000178).
1, 1, 1, 3, 16, 185, 4988, 354134, 71109667, 42836123450, 81600285441318, 515548511098996334, 11283348939893661586501, 890385701589932763452676123, 262895016275494870674135139820802, 300629890583706167610723324054426034948
Offset: 0
Keywords
Links
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
Programs
-
Mathematica
Table[Floor[Sqrt[Product[k!,{k,0,n}]]],{n,0,18}]
-
Maxima
makelist(floor(sqrt(product(k!,k,0,n))),n,0,12);
-
PARI
a(n) = sqrtint(prod(k=0, n, k!)); \\ Michel Marcus, Apr 08 2021
Formula
a(n) = floor(sqrt(Product_{k=0..n} k!)).
Extensions
Definition corrected by Georg Fischer, Apr 08 2021