cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007799 Irregular triangle read by rows: Whitney numbers of the second kind a(n,k), n >= 1, k >= 0, for the star poset.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 9, 5, 1, 4, 12, 30, 44, 26, 3, 1, 5, 20, 70, 170, 250, 169, 35, 1, 6, 30, 135, 460, 1110, 1689, 1254, 340, 15, 1, 7, 42, 231, 1015, 3430, 8379, 13083, 10408, 3409, 315, 1, 8, 56, 364, 1960, 8540, 28994, 71512, 114064, 96116, 36260
Offset: 1

Views

Author

Frederick J. Portier [fportier(AT)msmary.edu]

Keywords

Comments

Row sums are factorials. - N. J. A. Sloane, Mar 05 2017
a(n,k) is the number of permutations of 1..n that can be reached from the identity permutation in k steps using only the n-1 transpositions (1 2) (1 3) .. (1 n). The maximum value of k is given by floor(3*(n-1)/2). - Andrew Howroyd, May 13 2017

Examples

			Triangle begins:
  1;
  1,    1;
  1,    2,    2,    1;
  1,    3,    6,    9,    5;
  1,    4,   12,   30,   44,   26,    3;
  1,    5,   20,   70,  170,  250,  169,   35;
  1,    6,   30,  135,  460, 1110, 1689, 1254,  340,   15;
  ...
		

Crossrefs

Cf. A192837.

Programs

  • Mathematica
    nmax = 9; a[n_, 0] = 1; a[n_, 1] = n - 1; a[n_, 2] = (n - 1) (n - 2); a[n_, k_ /; k >= 2] := a[n, k] = (n - 1) a[n - 1, k - 1] + Sum[j a[j, k-3], {j, 1, n - 2}]; Flatten[Table[a[n, k], {n, 1, nmax}, {k, 0, Floor[3 (n - 1)/2]}]] (* Jean-François Alcover, Nov 10 2011, after Ke Qiu *)
    Table[Sum[Binomial[n - 1, k] Binomial[n - 1 - k, t] StirlingS1[k + 1, i - k + 1 - 2 t] (-1)^(i + 2 - t), {k, 0, Min[n - 1, i + 1]}, {t, Max[0, Ceiling[(i - 2 k)/2]], Min[n - 1 - k, Floor[(i + 1 - k)/2]]}], {n, 9}, {i, 0, Floor[3 (n - 1)/2]}] // Flatten (* Eric W. Weisstein, Dec 09 2017 *)

Formula

a(n,0) = 1, a(n,1) = n-1, a(n,2) = (n-1)(n-2), a(n,k) = a(n-1, k) + (n-1)a(n-1, k-1) - (n-2)a(n-2, k-1) + (n-2)a(n-2, k-3) for k >= 3.
a(n,0) = 1, a(n,1) = n - 1, a(n,2) = (n-1)(n-2); a(n,i) = (n-1)a(n-1, i-1) + Sum_{j=1 .. n-2} j a(j, i-3). For 0 <= i <= ceiling(3(n-1)/2) and n >= 1 we have Sum_{k=0 .. i+1} (-1)^k binomial(i+1, k) a(n+i+1-k, i) = 0. For example, for i=2, we have a(n+3, 2) - 3a(n+2, 2) + 3a(n+1, 2) - a(n, 2) = 0. - Ke Qiu (kqiu(AT)brocku.ca), Feb 06 2005

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 22 2000

A284039 Wiener index of the n-permutation star graph.

Original entry on oeis.org

0, 1, 27, 744, 26520, 1239840, 74662560, 5663831040, 530098007040, 60105991680000, 8127440487936000, 1292894601191424000, 239129895342514176000, 50899158690744139776000, 12356174324714508288000000, 3393918280427832764006400000, 1047355019625604129593753600000
Offset: 1

Views

Author

Eric W. Weisstein, Sep 13 2017

Keywords

Comments

The permutation star graph of order n is a vertex transitive graph with n! vertices and degree n-1. The graph can be constructed as the Cayley graph of the permutations of 1..n with the n-1 generators (1 2), (1 3)..(1 n) where (1 k) is the transposition of 1 and k. The number of nodes at distance k from a specified node is given by A007799(n,k). - Andrew Howroyd, Sep 17 2017

Crossrefs

Programs

  • Mathematica
    a[n_, 0] = 1;
    a[n_, 1] = n - 1;
    a[n_, 2] = (n - 1) (n - 2);
    a[n_, k_ /; k >= 2] := a[n, k] = (n - 1) a[n - 1, k - 1] + Sum[j a[j, k - 3], {j, 1, n - 2}];
    Table[n!/2 Sum[k a[n, k], {k, Floor[3 (n - 1)/2]}], {n, 10}]

Formula

a(n) = n!/2 * Sum_{k=1..floor(3*(n-1)/2)} k*A007799(n, k). - Andrew Howroyd, Sep 17 2017

Extensions

Terms a(8) and beyond from Andrew Howroyd, Sep 17 2017
Showing 1-2 of 2 results.