A192845 Molecular topological indices of the sun graphs.
4, 56, 180, 400, 740, 1224, 1876, 2720, 3780, 5080, 6644, 8496, 10660, 13160, 16020, 19264, 22916, 27000, 31540, 36560, 42084, 48136, 54740, 61920, 69700, 78104, 87156, 96880, 107300, 118440
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Molecular Topological Index
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A090197.
Programs
-
GAP
List([1..40], n -> 4*n*(-3+3*n+n^2)); # G. C. Greubel, Jan 05 2019
-
Magma
[4*n*(-3+3*n+n^2): n in [1..40]]; // G. C. Greubel, Jan 05 2019
-
Mathematica
Table[4*n*(-3+3*n+n^2), {n,1,40}] (* G. C. Greubel, Jan 05 2019 *) LinearRecurrence[{4,-6,4,-1},{4,56,180,400},30] (* Harvey P. Dale, Mar 02 2024 *)
-
PARI
vector(40, n, 4*n*(-3+3*n+n^2)) \\ G. C. Greubel, Jan 05 2019
-
Sage
[4*n*(-3+3*n+n^2) for n in (1..40)] # G. C. Greubel, Jan 05 2019
Formula
a(n) = 4*n*(-3 + 3*n + n^2).
a(n) = 4*A090197(n).
G.f.: 4*x*(1 + 10*x - 5*x^2)/(1-x)^4. - Colin Barker, Aug 07 2012
E.g.f.: 4*x*(1 + 6*x + x^2)*exp(x). - G. C. Greubel, Jan 05 2019
Comments