cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A192845 Molecular topological indices of the sun graphs.

Original entry on oeis.org

4, 56, 180, 400, 740, 1224, 1876, 2720, 3780, 5080, 6644, 8496, 10660, 13160, 16020, 19264, 22916, 27000, 31540, 36560, 42084, 48136, 54740, 61920, 69700, 78104, 87156, 96880, 107300, 118440
Offset: 1

Views

Author

Eric W. Weisstein, Jul 11 2011

Keywords

Comments

Sun graphs are defined for n >= 3; extended to n=1 using closed form.

Crossrefs

Cf. A090197.

Programs

  • GAP
    List([1..40], n -> 4*n*(-3+3*n+n^2)); # G. C. Greubel, Jan 05 2019
  • Magma
    [4*n*(-3+3*n+n^2): n in [1..40]]; // G. C. Greubel, Jan 05 2019
    
  • Mathematica
    Table[4*n*(-3+3*n+n^2), {n,1,40}] (* G. C. Greubel, Jan 05 2019 *)
    LinearRecurrence[{4,-6,4,-1},{4,56,180,400},30] (* Harvey P. Dale, Mar 02 2024 *)
  • PARI
    vector(40, n, 4*n*(-3+3*n+n^2)) \\ G. C. Greubel, Jan 05 2019
    
  • Sage
    [4*n*(-3+3*n+n^2) for n in (1..40)] # G. C. Greubel, Jan 05 2019
    

Formula

a(n) = 4*n*(-3 + 3*n + n^2).
a(n) = 4*A090197(n).
G.f.: 4*x*(1 + 10*x - 5*x^2)/(1-x)^4. - Colin Barker, Aug 07 2012
E.g.f.: 4*x*(1 + 6*x + x^2)*exp(x). - G. C. Greubel, Jan 05 2019